Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 121 mutants with altered response to infection were isolated from selections or screens for a bacterially unswollen (Bus) phenotype, using both chemical and transposon mutagenesis. Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5). Most mutants define 15 new genes (bus-1-bus-6, bus-8, bus-10, bus-12-bus-18). The majority of these mutants exhibit little or no rectal infection when challenged with the pathogen and are probably altered in surface properties such that the bacteria can no longer infect worms. A number have corresponding alterations in lectin staining and cuticle fragility. Most of the uninfectable mutants grow better than wild type in the presence of the pathogen, but the sur-2 mutant is hypersensitive, indicating that the tail-swelling response is associated with a specific defense mechanism against this pathogen.A LL multicellular organisms have to deal with bacterial pathogens of one kind or another and have evolved efficient defenses to survive in a world dominated, at least numerically, by potentially hostile prokaryotes. These defenses can be physical, providing mechanical barriers against invasion, or biological, in the form of antimicrobial compounds and dedicated phagocytic cells. Vertebrates have evolved sophisticated protection in the form of adaptive immunity, but most animal and plant species rely only on innate immune mechanisms, which are increasingly recognized as important and universal. Innate immune defenses can be studied effectively in model organisms such as Drosophila and Caenorhabditis elegans (Pradel and Ewbank 2004). For example, research on the Toll receptor in Drosophila was important in revealing the apparently conserved role of this receptor molecule in activating innate immunity. Recently, C. elegans has also become increasingly studied from the perspective of innate immunity (for recent reviews, see Millet and Ewbank 2004;Gravato-Nobre and Hodgkin 2005;Sifri et al. 2005).C. elegans is a species with a global distribution that lives by eating bacteria, so it is likely to encounter a very wide variety of bacteria in its diet and daily life. Few of these different bacterial species seem to have any deleterious effect on the worm, suggesting that it has effective means of protection. Recent work has identified a variety of different defense responses in the worm (Darby et al. 1999;Kim et al. 2002Kim et al. , 2004Huffman et al. 2004;Nicholas and Hodgkin 2004). Thus far, most of the bacteria that have been examined with respect to pathogenic or toxic effects on C. elegans ha...
SummaryThe amenability of the nematode Caenorhabditis elegans for genetic analysis and other experimentation provides a powerful tool for studying host-pathogen interactions. Our current understanding of how C. elegans responds to pathogen challenges is in its infancy, but the discovery that the worm has inducible defence responses, which to some extent parallel those of other organisms, demonstrates the potential of this model organism for the study of innate immunity. Most progress in dissecting the C. elegans antimicrobial response has focused around signal transduction pathways and the expression of genes activated by the worm in response to microbial infections.
Summary Cilia and extracellular vesicles (EVs) are signaling organelles[1]. Cilia act as cellular sensory antennae, with defects resulting in human ciliopathies. Cilia both release and bind to EVs[1]. EVs are submicron-sized particles released by cells and function in both short and long range intercellular communication. In C. elegans and mammals, the Autosomal Dominant Polycystic Kidney Disease (ADPKD) gene products polycystin-1 and polycystin-2 localize to both cilia and EVs, act in the same genetic pathway, and function in a sensory capacity, suggesting ancient conservation[2]. A fundamental understanding of EV biology and the relationship between the polycystins, cilia, and EVs is lacking. To define properties of a ciliated EV-releasing cell, we performed RNAseq on 27 GFP-labeled EV releasing neurons (EVNs) isolated from adult C. elegans. We identified 335 significantly overrepresented genes, of which 61 were validated by GFP reporters. The EVN transcriptional profile uncovered new pathways controlling EV biogenesis and polycystin signaling and also identified EV cargo, which included an antimicrobial peptide and ASIC channel. Tumor necrosis associated factor (TRAF) homologues trf-1 and trf-2 and the p38 mitogen-activated protein kinase (MAPK) pmk-1 acted in polycystin signaling pathways controlling male mating behaviors. pmk-1 was also required for EV biogenesis, independent of the innate immunity MAPK signaling cascade. This first high-resolution transcriptome profile of a subtype of ciliated sensory neurons isolated from adult animals reveals the functional components of an EVN.
Ventral enclosure in Caenorhabditis elegans involves migration of epidermal cells over a neuroblast substrate and subsequent adhesion at the ventral midline. Organisation of the neuroblast layer by ephrins and their receptors is essential for this migration. We show that bus-8, which encodes a predicted glycosyltransferase, is essential for embryonic enclosure and acts in or with ephrin signalling to mediate neuroblast organisation and to permit epidermal migration. BUS-8 acts non-cell-autonomously in this process, and likely modifies an extracellular regulator of ephrin signalling and cell organisation. Weak and cold-sensitive alleles of bus-8 show that the gene has a separate and distinct post-embryonic role, being essential for epidermal integrity and production of the cuticle surface. This disorganisation of the epidermis and cuticle layers causes increased drug sensitivity, which could aid the growing use of C. elegans in drug screening and chemical genomics. The viable mutants are also resistant to infection by the pathogen Microbacterium nematophilum, due to failure of the bacterium to bind to the host surface. The two separate essential roles of BUS-8 in epidermal morphogenesis add to our growing understanding of the widespread importance of glycobiology in development.
During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.