e Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter. The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to -lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.
Escherichia coli is a leading contributor to infectious diarrhea and child mortality worldwide, but it remains unknown how alterations in the gut microbiome vary for distinct E. coli pathotype infections and whether these signatures can be used for diagnostic purposes. Further, the majority of enteric diarrheal infections are not diagnosed with respect to their etiological agent(s) due to technical challenges. To address these issues, we devised a novel approach that combined traditional, isolate-based and molecular-biology techniques with metagenomics analysis of stool samples and epidemiological data. Application of this pipeline to children enrolled in a case-control study of diarrhea in Ecuador showed that, in about half of the cases where an E. coli pathotype was detected by culture and PCR, E. coli was likely not the causative agent based on the metagenome-derived low relative abundance, the level of clonality, and/or the virulence gene content. Our results also showed that diffuse adherent E. coli (DAEC), a pathotype that is generally underrepresented in previous studies of diarrhea and thus, thought not to be highly virulent, caused several small-scale diarrheal outbreaks across a rural to urban gradient in Ecuador. DAEC infections were uniquely accompanied by coelution of large amounts of human DNA and conferred significant shifts in the gut microbiome composition relative to controls or infections caused by other E. coli pathotypes. Our study shows that diarrheal infections can be efficiently diagnosed for their etiological agent and categorized based on their effects on the gut microbiome using metagenomic tools, which opens new possibilities for diagnostics and treatment. IMPORTANCE E. coli infectious diarrhea is an important contributor to child mortality worldwide. However, diagnosing and thus treating E. coli infections remain challenging due to technical and other reasons associated with the limitations of the traditional culture-based techniques and the requirement to apply Koch’s postulates. In this study, we integrated traditional microbiology techniques with metagenomics and epidemiological data in order to identify cases of diarrhea where E. coli was most likely the causative disease agent and evaluate specific signatures in the disease-state gut microbiome that distinguish between diffuse adherent, enterotoxigenic, and enteropathogenic E. coli pathotypes. Therefore, our methodology and results should be highly relevant for diagnosing and treating diarrheal infections and have important applications in public health.
Plant microbiomes have been extensively studied for their agricultural relevance on growth promotion and pathogenesis, but little is known about their role as part of the diet when fresh fruits and vegetables are consumed raw. Most studies describing these communities are based on 16S rRNA gene amplicon surveys, limiting our understanding of the taxonomic resolution at the species level and functional capabilities. In this study, we characterized microbes colonizing tomatoes, spinach, brined olives, and dried figs using shotgun metagenomics. We recovered metagenome-assembled genomes of novel lactic acid bacteria from green olives and identified high intra- and inter-specific diversity of Pseudomonas in tomatoes. All samples were colonized by Pseudomonas, consistent with other reports with distinct community structure. Functional characterization showed the presence of enzymes involved in vitamin and short chain fatty acid metabolism and degradation of diverse carbohydrate substrates including plant fibers. The dominant bacterial members were isolated, sequenced, and mapped to its metagenome confirming their identity and indicating the microbiota is culturable. Our results reveal high genetic diversity, previously uncultured genera, and specific functions reflecting a likely plant host association. This study highlights the potential that plant microbes can play when consumed as part of our diet and proposes these as transient contributors to the gut microbiome.
Previous studies have reported lower fecal bacterial diversity in urban populations compared with those living in rural settings. However, most of these studies compare geographically distant populations from different countries and even continents. The extent of differences in the gut microbiome in adjacent rural versus urban populations, and the role of such differences, if any, during enteric infections remain poorly understood. To provide new insights into these issues, we sampled the gut microbiome of young children with and without acute diarrheal disease (ADD) living in rural and urban areas in northern Ecuador. Shotgun metagenomic analyses of non-ADD samples revealed small but significant differences in the abundance of microbial taxa, including a greater abundance of Prevotella and a lower abundance of Bacteroides and Alistipes in rural populations. Greater and more significant shifts in taxon abundance, metabolic pathway abundance, and diversity were observed between ADD and non-ADD status when comparing urban to rural sites (Welch’s t-test, P < 0.05). Collectively our data show substantial functional, diversity, and taxonomic shifts in the gut microbiome of urban populations with, ADD supporting the idea that the microbiome of rural populations may be more resilient to ADD episodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.