Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and and RMSD (value lower than 2Å for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.
The main objective of the molecular docking problem is to find a conformation between a small molecule (ligand) and a receptor molecule with minimum binding energy. The quality of the docking score depends on two factors: the scoring function and the search method being used to find the lowest binding energy solution. In this context, AutoDock 4.2 is a popular C++ software package in the bioinformatics community providing both elements, including two genetic algorithms, one of them endowed with a local search strategy. This paper principally focuses on the search techniques for solving the docking problem. In using the AutoDock 4.2 scoring function, the approach in this study is twofold. On the one hand, a number of four metaheuristic techniques are analyzed within an extensive set of docking problems, looking for the best technique according to the quality of the binding energy solutions. These techniques are thoroughly evaluated and also compared with popular well-known docking algorithms in AutoDock 4.2. The metaheuristics selected are: generational and a steady-state Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization. On the other hand, a C++ version of the jMetal optimization framework has been integrated inside AutoDock 4.2, so that all the algorithms included in jMetal are readily available to solve docking problems. The experiments reveal that Differential Evolution obtains the best overall results, even outperforming other existing algorithms specifically designed for molecular docking.
Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery.
jMetalCpp software adapted to AutoDock is freely available as a C++ source code at http://khaos.uma.es/AutodockjMetal/.
BackgroundSystematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) has been designed as standard clinical terminology for annotating Electronic Health Records (EHRs). EHRs textual information is used to classify patients’ diseases into an International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) category (usually by an expert). Improving the accuracy of classification is the main purpose of using ontologies and OWL representations at the core of classification systems. In the last few years some ontologies and OWL representations for representing ICD-10-CM categories have been developed. However, they were not designed to be the basis for an automatic classification tool nor do they model ICD-10-CM inclusion terms as Web Ontology Language (OWL) axioms, which enables automatic classification. In this context we have developed Dione, an OWL representation of ICD-10-CM.ResultsDione is the first OWL representation of ICD-10-CM, which is logically consistent, whose axioms define the ICD-10-CM inclusion terms by means of a methodology based on SNOMED CT/ICD-10-CM mappings. The ICD-10-CM exclusions are handled with these mappings. Dione currently contains 391,669 classes, 391,720 entity annotation axioms and 11,795 owl:equivalentClass axioms which have been constructed using 104,646 relationships extracted from the SNOMED CT/ICD-10-CM and BioPortal mappings included in Dione using the owl:intersectionOf and the owl:someValuesFrom statements. The resulting OWL representation has been classified and its consistency tested with the ELK reasoner. We have also taken three clinical records from the Virgen de la Victoria Hospital (Málaga, Spain) which have been manually annotated using SNOMED CT. These annotations have been included as instances to be classified by the reasoner. The classified instances show that Dione could be a promising ICD-10-CM OWL representation to support the classification of patients’ diseases.ConclusionsDione is a first step towards the automatic classification of patients’ diseases by using SNOMED CT annotations embedded in Electronic Health Records (EHRs). The purpose of Dione is to standardise and formalise a medical terminology, thereby enabling new kinds of tools and new sets of functionalities to be developed. This in turn assists health specialists by providing classified information from EHRs and enables the automatic annotation of patients’ diseases with ICD-10-CM codes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13326-016-0105-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.