Background The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality. MethodsIn this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model. Findings Three distinct phenotypes were derived in the derivation cohort (n=2667)-phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])-and reproduced in the internal validation cohort (n=1368)phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2•5% (95% CI 1•4-4•3) for patients with phenotype A, 30•5% (28•5-32•6) for patients with phenotype B, and 60•7% (53•7-67•2) for patients with phenotype C (log-rank test p<0•0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5•3% [95% CI 3•4-8•1] for phenotype A, 31•3% [28•5-34•2] for phenotype B, and 59•5% [48•8-69•3] for phenotype C; external validation cohort: 3•7% [2•0-6•4] for phenotype A, 23•7% [21•8-25•7] for phenotype B, and 51•4% [41•9-60•7] for phenotype C).Interpretation Patients admitted to hospital with COVID-19 can be classified into three...
SummaryThis study was carried out to examine the diagnostic approach to patients with suspected pulmonary embolism (PE) in a university hospital. A retrospective case record review of 251 patients with suspected pulmonary embolism was carried out according to a standard protocol, which looked at the utilisation of imaging techniques and compared clinical diagnoses with a standardised diagnosis established according to current recommendations. Isotopic lung scan was the most commonly used technique (73%), followed by leg vein sonography (36%) and contrast venography (31%). Lung arteriography was done in only 7% of patients. Among the 205 patients with a clinical diagnosis of PE, 115 (56%) would be diagnosed as having PE according to the standard criteria, 84 (41%) would be unclassified, and six (3%) would not be regarded as having PE. Among patients who were diagnosed as having PE and received anticoagulant therapy, 32% did not have the diagnosis confirmed by an imaging technique. Most of these had a non-diagnostic lung scan which, despite evidence to the contrary, seemed to be interpreted as confirmation of PE. We conclude that clinicians do not seem to follow current recommendations when approaching patients with suspected PE. In particular, there is an over-reliance on lung scans, and the significance of non-diagnostic scans was often misinterpreted. Arteriography was underused. These results emphasise the need to take measures to implement practice guidelines and to explore the usefulness of newer non-invasive techniques.
The significant impact of COVID-19 worldwide has made it necessary to develop tools to identify patients at high risk of severe disease and death. This work aims to validate the RIM Score-COVID in the SEMI-COVID-19 Registry. The RIM Score-COVID is a simple nomogram with high predictive capacity for in-hospital death due to COVID-19 designed using clinical and analytical parameters of patients diagnosed in the first wave of the pandemic. The nomogram uses five variables measured on arrival to the emergency department (ED): age, sex, oxygen saturation, C-reactive protein level, and neutrophil-to-platelet ratio. Validation was performed in the Spanish SEMI-COVID-19 Registry, which included consecutive patients hospitalized with confirmed COVID-19 in Spain. The cohort was divided into three time periods: T1 from February 1 to June 10, 2020 (first wave), T2 from June 11 to December 31, 2020 (second wave, pre-vaccination period), and T3 from January 1 to December 5, 2021 (vaccination period). The model’s accuracy in predicting in-hospital COVID-19 mortality was assessed using the area under the receiver operating characteristics curve (AUROC). Clinical and laboratory data from 22,566 patients were analyzed: 15,976 (70.7%) from T1, 4,233 (18.7%) from T2, and 2,357 from T3 (10.4%). AUROC of the RIM Score-COVID in the entire SEMI-COVID-19 Registry was 0.823 (95%CI 0.819–0.827) and was 0.834 (95%CI 0.830–0.839) in T1, 0.792 (95%CI 0.781–0.803) in T2, and 0.799 (95%CI 0.785–0.813) in T3. The RIM Score-COVID is a simple, easy-to-use method for predicting in-hospital COVID-19 mortality that uses parameters measured in most EDs. This tool showed good predictive ability in successive disease waves. Supplementary Information The online version contains supplementary material available at 10.1007/s11739-023-03200-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.