In recent years, there has been an increased interest in the study of saliva. This bodily fluid contains a vast number of protein species, the salivary peptidome, of low molecular weight, comprising approximately 40-50% of the total secreted proteins, in addition to peptides generated by proteolysis of proteins of different sources. Owing to the presence of other components, in particular mucins and enzymes, some distinctive requirements and precautions related to sample collection, time of analysis, sample preservation and treatment are necessary for the successful analysis of salivary peptides. More than 2000 peptides compose the salivary peptidome, from which only 400-600 are directly derived from salivary glands, suggesting an important qualitative peptide contribution of other sources, namely of epithelial cells. Proteolysis events are the main supply for the peptidome and considerable efforts have been made to identify the resulting fragments, the cleavage sites and the involved proteases. The salivary proteins more prone to proteolysis are proline-rich proteins (PRPs; acidic PRPs and basic PRPs), statherin, histatins and P-B peptide. Gln-Gly cleavages are largely associated with PRP classes, while Tyr-Gly cleavages are related to histatin 1 and to the P-B peptide. The interest in saliva has been growing for clinical purposes, as it is an alternative sample to other traditional bodily fluids, such as blood or urine, since it involves an easy and noninvasive collection. In fact, apart from its usefulness as a source of information for the prognosis, diagnosis and treatment of oral diseases, such as Sjögren's syndrome, gum disease, tooth decay or oral cancer, saliva might also be seen as a potential tool to the diagnosis of systemic diseases. Owing to the enormous amount of previously discovered salivary peptide species, in this article, we attempt to harmonize the nomenclature, following International Union of Pure and Applied Chemistry recommendations.
Interest in the characterization of the salivary proteome has increased in the last few years. This review discusses the different techniques and methodologies applied to the separation and identification of salivary proteins. Nowadays, proteomic techniques are the state of the art for the analysis of biologic materials and saliva is no exception. 2D electrophoresis and tryptic digest analysis by mass spectrometry are the typical methodology, but new approaches using 2D liquid chromatography/mass spectrometry methods have already been introduced for saliva analysis. Due to their important physiologic role in the oral cavity, low-molecular-weight proteins and peptides are also included in this article and the methodologies discussed.
The present study proposes a strategy for human in vivo acquired enamel pellicle (AEP) peptidome characterisation based on sequential extraction with guanidine and TFA followed by MALDI-TOF/TOF identification. Three different nanoscale analytical approaches were used: samples were subjected to tryptic digestion followed by nano-HPLC and mass spectrometry (MS and MS/MS) analysis. Undigested samples were analysed by LC-MS (both linear and reflector modes) and LC-MS/MS analysis, and samples were subjected to nano-HPLC followed by on-plate digestion and mass spectrometry (MS and MS/MS) analysis. The majority of the identifications corresponded to peptide/protein fragments of salivary protein, belonging to the classes: acidic PRPs, basic PRPs, statherin, cystatins S and SN and histatin 1 (all also identified in intact form). Overall, more than 90 peptides/proteins were identified. Results clearly show that peptides with acidic groups are enriched in the TFA fraction while peptides with no acidic or phosphate groups are prevalent on the guanidine extract. Also, phosphorylated peptides were observed mainly on the TFA fraction. Fragments present in the AEP show a predominance of cleavage points located at Arg, Tyr and Lys residues. Obtained data suggest that proteolytic activity could influence AEP formation and composition.
Human acquired enamel pellicle is the result of a selective interaction of salivary proteins and peptides with the tooth surface. In the present work, the characterization of the peptides as well as the type of interactions established with the enamel surface was performed. Peptides from in vivo bovine enamel implants in the human oral cavity were sequentially extracted using guanidine and trifluoroacetic acid solutions and the fractions obtained were analysed by LC-MS and LC-MS/MS. Based on the LC-MS data, six phosphorylated peptides were identified in an intact form, strongly adsorbed to the enamel surface. Data from the LC-MS/MS analyses allowed us to identified 30 fragment peptides non-covalently bonded to enamel [basic proline-rich proteins, histatins (1 and 3) and acidic proline-rich protein classes]. The tandem mass spectrometry experiments showed the existence of a pattern of amide bond cleavage for the different identified peptide classes suggesting a selective proteolytic activity. For histatins, a predominance of cleavage at Arg, Lys and His residues was observed, while for basic proline-rich proteins, cleavage at Arg and Pro residues prevailed. In the case of acidic proline-rich proteins, a clearly predominance of cleavage of the Gln-Gly amide bond was evident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.