The introduction of exotic species in aquatic habitats is one of the causes for the amphibian declines observed worldwide. In the 1970s, the red swamp crayfish Procambarus clarkii was introduced in the southwest Iberian Peninsula, where no native crayfish occur. In this study we assess the effect of P. clarkii presence in the breeding site distribution of each of the 13 southwest Iberian amphibians, while simultaneously accounting for the effects of potentially confounding habitat variables, as well as for the effects of the other large aquatic predators in the study area – predatory fish. Amphibian species richness was lower in places where P. clarkii was present than in places without P. clarkii, regardless of fish presence. After accounting for habitat variables and fish, crayfish presence was a negative predictor of the breeding probability for all urodeles (Pleurodeles waltl, Salamandra salamandra, Triturus boscai and T. marmoratus) and for two anurans (Pelobates cultripes and Bufo bufo). The majority of the species affected usually breed in temporary ponds without fish, but that may be colonized by the crayfish. The ongoing expansion of P. clarkii may eventually lead to a growing isolation of amphibian populations and ultimately to local extinctions and a permanent alteration of the amphibian communities in southwest Iberian Peninsula.
Although numerous clinical features and laboratory values were abnormal, most findings were non-specific. The skin biopsy yielded a positive clinical correlation in most cases. Our study had a high percentage of erythroderma secondary to preexisting skin disease and a relatively low percentage of idiopathic erythroderma.
BackgroundECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells). The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis.MethodsUCX® cells were isolated using a proprietary method (PCT/IB2008/054067) that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR) assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time.ResultsUCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs). Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant induced arthritis model, animals treated with intra-articular (i.a.) and intra-peritoneal (i.p.) infusions of UCX® cells showed faster remission of local and systemic arthritic manifestations.ConclusionThe results suggest that UCX® cells may be an effective and promising new approach for treating both local and systemic manifestations of inflammatory arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.