This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors’ estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.
The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.