The increase in environmental consciousness and stricter regulations has motivated industries to seek sustainable technologies that allow valorising wastewaters, contributing to the profitability of overall processes. Canning industry effluents, namely sardine cooking wastewater, have a high organic matter load, containing proteins and lipids. Their untreated discharge has a negative environmental impact and an economic cost. This work aims to design an integrated process that creates value with the costly sardine cooking wastewater effluent. The research strategy followed evaluates coagulation/flocculation technologies as pre-treatment of the sardine cooking wastewater followed by reverse osmosis. Two different added-value products were obtained: a solid fraction rich in proteins, lipids (above 20%), and aromas that might be used for feed/pet/aquaculture applications and, from the processing of the resultant aqueous stream by reverse osmosis, a natural flavouring additive, which can be applied in food/feed. Additionally, the permeate from reverse osmosis presents a much lower organic load than the original raw material, which may be reused in the overall process (e.g., as water for washings) or discharged at a lower cost, with environmental benefits and economic savings.
Due to the lack of studies addressing the influence of real food matrices on integrated organophilic pervaporation/fractionated condensation processes, the present work analyses the impact of the real matrix of sardine cooking wastewaters on the fractionation of aromas. In a previous study, a thermodynamic/material balance model was developed to describe the integrated pervaporation—a fractionated condensation process of aroma recovery from model solutions that emulate seafood industry aqueous effluents, aiming to define the best conditions for off-flavour removal. This work assesses whether the previously developed mathematical model, validated only with model solutions, is also applicable in predicting the fractionation of aromas of different chemical families from real effluents (sardine cooking wastewaters), aiming for off-flavour removals. It was found that the food matrix does not influence substantial detrimental consequences on the model simulations, which validates and extends the applicability of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.