Precision livestock farming has emerged with the aim of providing detailed information to detect and reduce problems related to animal management. This study aimed to develop and validate computer vision techniques to track required features of cattle face and to remotely assess eye temperature, ear-base temperature, respiration rate, and heart rate in cattle. Ten dairy cows were recorded during six handling procedures across two consecutive days using thermal infrared cameras and RGB (red, green, blue) video cameras. Simultaneously, core body temperature, respiration rate and heart rate were measured using more conventional ‘invasive’ methods to be compared with the data obtained with the proposed algorithms. The feature tracking algorithm, developed to improve image processing, showed an accuracy between 92% and 95% when tracking different areas of the face of cows. The results of this study also show correlation coefficients up to 0.99 between temperature measures obtained invasively and those obtained remotely, with the highest values achieved when the analysis was performed within individual cows. In the case of respiration rate, a positive correlation (r = 0.87) was found between visual observations and the analysis of non-radiometric infrared videos. Low to high correlation coefficients were found between the heart rates (0.09–0.99) obtained from attached monitors and from the proposed method. Furthermore, camera location and the area analysed appear to have a relevant impact on the performance of the proposed techniques. This study shows positive outcomes from the proposed computer vision techniques when measuring physiological parameters. Further research is needed to automate and improve these techniques to measure physiological changes in farm animals considering their individual characteristics.
Simple Summary: Respiratory disease in pigs causes suffering in infected animals and economic losses to producers. One of the most appropriate approaches to minimising these negative effects is by the early detection of infected animals. This pilot study aimed to use computer-based techniques to measure changes in temperature (eye and ear-base temperature), heart rate and respiration rate of pigs from thermal-infrared and conventional images. These measures, together with clinical observations, were obtained from pigs that were infected with Actinobacillus pleuropneumoniae (APP) and from pigs that were healthy. Infected pigs showed higher temperature and heart rate than healthy pigs across the period analysed. Respiration rate showed less difference between infected and healthy pigs. In addition, the biggest changes in these measures were recorded from six hours before the clinical observations identified sick animals. Results have highlighted that computer vision techniques can provide important and useable data regarding physiological changes that can indicate early signs of respiratory infection in pigs. This could aid the management of the disease, increasing the success of the treatment and decreasing the rate of severe cases and death.Abstract: Respiratory diseases are a major problem in the pig industry worldwide. Due to the impact of these diseases, the early identification of infected herds is essential. Computer vision technology, using RGB (red, green and blue) and thermal infrared imagery, can assist the early detection of changes in animal physiology related to these and other diseases. This pilot study aimed to identify whether these techniques are a useful tool to detect early changes of eye and ear-base temperature, heart rate and respiration rate in pigs that were challenged with Actinobacillus pleuropneumoniae. Clinical observations and imagery were analysed, comparing data obtained from animals that showed some signs of illness with data from animals that showed no signs of ill health. Highly significant differences (p < 0.05) were observed between sick and healthy pigs in heart rate, eye and ear temperature, with higher heart rate and higher temperatures in sick pigs. The largest change in temperature and heart rate remotely measured was observed around 4-6 h before signs of clinical illness were observed by the skilled technicians. These data suggest that computer vision techniques could be a useful tool to detect indicators of disease before the symptoms can be observed by stock people, assisting the early detection and control of respiratory diseases in pigs, promoting further research to study the capability and possible uses of this technology for on farm monitoring and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.