The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron’s already known bioactivity, which is attributed to the main components—crocetin and its glycosidic esters, called crocins, and safranal—and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Crocus sativus L. has been cultivated throughout history to obtain its flowers, whose dried stigmas give rise to the spice known as saffron. Crocetin esters, picrocrocin, and safranal are the main metabolites of this spice, which possess a great bioactivity, although the mechanisms of action and its bioavailability are still to be solved. The rest of the flower is composed by style, tepals, and stamens that have other compounds, such as kaempferol and delphinidin, which have an important antioxidant capacity, and these can be applied in foods, phytopharmaceuticals, and cosmetics. The aim of this work was to provide an updated and critical review of the research on the main compounds of Crocus sativus L. flower, including the adequate analytical methods for their identification and quantification, with a focus on their bioactivity and bioavailability.
Nutrition is considered to be a possible factor in the pathogenesis of the neurological disease multiple sclerosis (MS). Nutrition intervention studies suggest that diet may be considered as a complementary treatment to control the progression of the disease; a systematic review of the literature on the influence of diet on MS was therefore conducted. The literature search was conducted by using Medlars Online International Literature (MEDLINE) via PubMed and Scopus. Forty-seven articles met the inclusion criteria. The reviewed articles assessed the relations between macro- and micronutrient intakes and MS incidence. The patients involved used alternative therapies (homeopathy), protocolized diets that included particular foods (herbal products such as grape seed extract, ginseng, blueberries, green tea, etc.), or dietary supplements such as vitamin D, carnitine, melatonin, or coenzyme Q10. Current studies suggest that high serum concentrations of vitamin D, a potent immunomodulator, may decrease the risk of MS and the risk of relapse and new lesions, while improving brain lesions and timed tandem walking. Experimental evidence suggests that serum vitamin D concentration is lower during MS relapses than in remission and is associated with a greater degree of disability [Expanded Disability Status Scale (EDSS) score >3]. The findings suggest that circulating vitamin D concentrations can be considered a biomarker of MS and supplemental vitamin D can be used therapeutically. Other studies point to a negative correlation between serum vitamin B-12 concentrations and EDSS score. Vitamin B-12 has fundamental roles in central nervous system function, especially in the methionine synthase-mediated conversion of homocysteine to methionine, which is essential for DNA and RNA synthesis. Therefore, vitamin B-12 deficiency may lead to an increase in the concentration of homocysteine. Further research is clearly necessary to determine whether treatment with vitamin B-12 supplements delays MS progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.