Objectives Change limits, more commonly called delta check, are those in which a change in a patient’s measured result in relation to their corresponding preceding measurement is suspected of being erroneous and should be considered as a doubtful result. The aim of this study was to provide change limits for some biochemical and haematological quantities to detect doubtful measured results and to assess its effectiveness to detect erroneous results for their application in and the standardization of the plausibility control. Methods Change limits have been estimated for 13 biochemical and 6 haematological quantities. For each quantity, relative differences (D), expressed as a percentage between the two consecutive measured results from the same patient (from scheduled laboratory requests), were calculated. From these differences (D), the p5 and p95 percentiles of the data distribution were calculated. To assess the effectiveness of the change limits to detect laboratory errors, 43 erroneous laboratory reports, containing different biochemical and haematological quantities, were obtained from the standard laboratory plausibility control procedure. Results From the 43 erroneous laboratory reports, 31 (72%) were due to endovenous administration errors and 12 (28%) were due to mislabeling errors. All erroneous laboratory reports were detected when the change limits of the quantities were combined and applied together. Conclusions The best combination of quantities, which detect all the erroneous reports in the same specimen were: potassium, albumin, creatinine, glucose and haemoglobin.
Resumen Objetivos Los límites de cambio, conocidos como deltacheck, son aquellos valores que indican sospecha de que la variación entre el resultado actual obtenido y el resultado anterior de la misma magnitud en un mismo paciente se debe a un error y, por tanto, dicho resultado ha de ser cuestionado. El propósito del presente estudio es establecer los límites de cambio para algunas magnitudes hematológicas y bioquímicas, con el fin de detectar resultados potencialmente erróneos, así como evaluar su eficacia a la hora de detectar resultados erróneos, para estandarizar el proceso de control de la plausibilidad. Métodos Se calcularon los límites de cambio para 13 magnitudes bioquímicas y 6 hematológicas. Para cada magnitud, se calcularon las diferencias relativas (D), expresadas como la diferencia porcentual entre dos resultados consecutivos en el mismo paciente. A partir de dichas diferencias (D), se calcularon los percentiles 5 y 95 de la distribución de datos. Para evaluar eficacia de los límites de cambio se emplearon 43 informes de laboratorio considerados erróneos a partir del procedimiento habitual de control de la plausibilidad utilizado en el laboratorio. Resultados De los 43 informes de laboratorio que contenían algún error, 31 (72%) fueron clasificados como errores de contaminación por administración endovenosa y 12 (28%) como errores en la identificación del paciente. Todos los informes de laboratorio erróneos fueron detectados al aplicar conjuntamente los límites de cambio estimados de las diferentes magnitudes. Conclusiones La mejor combinación de magnitudes en la misma muestra capaces de detectar informes de laboratorio erróneos fue: concentración de potasio, albúmina, creatinina, glucosa y hemoglobina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.