Abstract.Heterochromatin is one of the most dynamic components in the genome of species. Previous studies on the heterochromatin content and distribution in Heteroptera (insects with holokinetic chromosomes) have shown that the species belonging to the family Coreidae are interesting model organisms since they show very diverse C bands patterns. In the present work, we analyzed the C-band pattern in individuals of Holhymenia rubiginosa from different populations collected in different years. This species has the diploid karyotype 2n = 27/28 = 24 + 2m + X0/XX (male/female). C-bands are terminally, subterminally or interstitially located on 10-17 chromosomes and a remarkable heterochromatin heteromorphism is observed in the meiotic bivalents: in the presence/absence of bands, in the size of bands and number of bands. A heteromorphism is also inferred in the number of ribosomal genes from the difference in the fluorescent in situ hybridization signals between NOR-homologues. Chiasmata are generally located opposite to conspicuous C-bands, but in some bivalents chiasmata are also observed in close proximity to C-bands. Considering the striking variation in heterochromatin content between individuals and populations it is suggested that heterochromatin should be selectively neutral in H. rubiginosa.
Abstract. The Coreidae (Heteroptera) have holokinetic chromosomes and during male meiosis the autosomal bivalents segregate reductionally at anaphase I while the sex chromosomes do so equationally. The modal diploid chromosome number of the family is 2n = 21, with a pair of m-chromosomes and an X0/XX sex chromosome system. A 2n = 24/26 (male/female) and an X1X20/X1X1X2X2 sex chromosome system were found in Spartocera batatas (Fabricius). C-banding and fluorescent-banding revealed the presence of AT-rich heterochromatic bands medially located on all the autosomes, and one telomeric band on both the X1 and X2 chromosomes. This banding pattern differed from the telomeric heterochromatin distribution found in most other heteropteran species. The X1 and X2 chromosomes were intimately associated during male meiosis and difficult to recognize as two separate entities. Based on a comparison with the behaviour of sex chromosomes in other coreids and other heteopterans with multiple sex chromosomes it is suggested that the particular behaviour of X1 and X2 chromosomes in coreid species with multiple sex chromosome systems evolved as an alternative mechanism for ensuring the proper segregation of the sex chromosomes during meiosis.
Methane aromatization is a promising technology for the transformation of natural gas to added-value products. The main objective of this work was to obtain a catalyst with suitable performance and good mechanical stability for methane aromatization reaction in fluidized bed reactors. The selected catalyst was Mo/H-ZSM-5/bentonite mixture. Mo/ZSM-5 was chosen as the active material, since it provides good selectivity to aromatics but the particle size of the zeolite was too small for operation in a fluidized bed and a binder was needed. We prepared two series of catalysts with two different zeolites. We tested several heating velocities (1, 7 and 10 °C min‒1) in the different stages of catalyst synthesis. Methane conversion and selectivity to aromatic products improved when using gentle thermal treatments, increasing 2% and 10%, respectively, for the best catalyst tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.