In this paper we study a new way to model noisy input flows in the chemostat model, based on the Ornstein-Uhlenbeck process. We introduce a parameter β as drift in the Langevin equation, that allows to bridge a gap between a pure Wiener process, which is a common way to model random disturbances, and no noise at all. The value of the parameter β is related to the amplitude of the deviations observed on the realizations. We show that this modeling approach is well suited to represent noise on an input variable that has to take non-negative values for almost any time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.