Applied cold atmospheric plasma allows for the controlled delivery of reactive oxygen and nitrogen species tailored for specific applications. Through the manipulation of the plasma parameters, feed gases, and careful consideration of the environment surrounding the treatment target, selective chemistries that preferentially influence the target can be produced and delivered. To demonstrate this, the COST reference microscale atmospheric pressure plasma jet is used to study the generation and transport of O and ⋅ OH from the gas phase through the liquid to the biological model target cysteine. Relative and absolute species densities of ⋅ OH and O are measured in the gas phase through laser induced fluorescence (LIF) and two-photon absorption LIF respectively. The transport of these species is followed into the liquid phase by hydrogen peroxide quantification and visualized by a fluorescence assay. Modifications to the model biological sample cysteine exposed to ⋅ OH and H2O2 dominated chemistry (He/H2O (0.25%)) and O dominated chemistry (He/O2 (0.6%)) is measured by FTIR spectroscopy. The origin of these species that modify cysteine is considered through the use of heavy water (H 2 18 O) and mass spectrometry. It is found that the reaction pathways differ significantly for He/O2 and He/H2O. Hydrogen peroxide is formed mainly in the liquid phase in the presence of a substrate for He/O2 whereas for He/H2O it forms in the gas phase. The liquid chemistry resulting from the He/O2 admixture mainly targets the sulfur moiety of cysteine for oxidation up to irreversible oxidation states, while He/H2O treatment leads preferentially to reversible oxidation products. The more O or OH/H2O2 dominated chemistry produced by the two gas admixtures studied offers the possibility to select species for target modification.
High voltage nanosecond pulse driven electric discharges in de-ionized water with an argon bubble suspended between two electrodes were experimentally investigated. Two electrode configurations were used to temporally resolve the time scales of the discharge from the applied voltage rise time (7 ns), through the end of the first pulse ([Formula: see text]30 ns), and longer (>50 ns). We found that, in positive and negative applied voltage polarities, discharge initiates in the water at the tip of the anode. The discharge in the water rapidly extends ([Formula: see text] m/s) to the apex of the bubble and light emitted from inside the bubble begins to form. The steep rate of rise of the applied voltage ([Formula: see text] kV/ns) and the short time for the development of discharge in the water suggest that cavitation is a likely mechanism for discharge initiation and propagation in water. In addition, the short duration of the applied voltage pulse results in only a partial Townsend discharge inside the bubble.
Enzymes like fatty acid peroxygenase OleTJE are desirable enzymes for the industry. While they require inexpensive hydrogen peroxide for activity, the same hydrogen peroxide also causes overoxidation of their reactive heme center. Here, we generate hydrogen peroxide slowly in situ using the Cooperation in Science and Technology (COST)‐Jet, an atmospheric pressure plasma jet, to avoid overoxidizing OleTJE. The COST‐Jet was operated in helium with a water admixture to provide hydrogen peroxide for OleTJE activity. This helium/water admixture produced the highest enzyme turnover numbers after 2 min of treatment. These turnover numbers were even superior to using an equimolar amount of hydrogen peroxide to treat the enzymes exogenously, showing that this plasma source can provide a reliable amount of reaction mediator to support OleTJE activity.
Mechanisms for the cold atmospheric plasma (CAP) treatment of cells in solution are needed for more optimum design of plasma devices for wound healing, cancer treatment, and bacterial inactivation. However, the complexity of organic molecules on cell membranes makes understanding mechanisms that result in modifications (i.e., oxidation) of such compounds difficult. As a surrogate to these systems, a reaction mechanism for the oxidation of cysteine in CAP activated water was developed and implemented in a 0-dimensional (plug-flow) global plasma chemistry model with the capability to address plasma-liquid interactions. Reaction rate coefficients for organic reactions in water were estimated based on available data in the literature or by analog to gas-phase reactions. The mechanism was validated by comparison to experimental mass-spectrometry data for COST-jets sustained in He/O2, He/H2O and He/N2/O2 mixtures treating cysteine in water. Results from the model were used to determine the consequences of changing COST-jet operating parameters, such as distance from the substrate and inlet gas composition, on cysteine oxidation product formation. Results indicate that operating parameters can be adjusted to select for desired cysteine oxidation products, including nitrosylated products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.