Summary
Crimean‐Congo haemorrhagic fever virus (CCHFV) is one of the most widespread of all medically important arboviruses with ticks of the Hyalomma spp. serving as the main vectors. Infection of livestock by CCHFV serves as a route of exposure to humans, as a reservoir of disease and as a route of importation. This study discusses the pathways and data requirements for a qualitative risk assessment for the emergence of CCHFV in livestock in Europe. A risk map approach is proposed based on layers that include the potential routes of release (e.g. by migrating birds carrying infected ticks) together with the main components for exposure, namely the distributions of the tick vectors, the small vertebrate host reservoirs and the livestock. A layer on landscape fragmentation serves as a surrogate for proximity of livestock to the tick cycle. Although the impact of climate change on the emergence of CCHF is not clear, comparing the distribution of risk factors in each layer currently with those predicted in the 2080s with climate change can be used to speculate how potential high‐risk areas may shift. According to the risk pathway, transstadial and/or transovarial transmission in the tick vector are crucial for CCHFV spread. Vector competence and tick vector switching, however, remain critical factors for CCHFV colonization of new regions in Europe. The species of migratory bird is also an important consideration in the release assessment with greater abundance and biodiversity of ground‐dwelling birds in southern Europe than in northern Europe.
To predict the risk of incursion of Crimean-Congo haemorrhagic fever virus (CCHFV) in livestock in Europe introduced through immature Hyalomma marginatum ticks on migratory birds under current conditions and in the decade 2075-2084 under a climate-change scenario. A spatial risk map of Europe comprising 14 282 grid cells (25 × 25 km) was constructed using three data sources: (i) ranges and abundances of four species of bird which migrate from sub-Saharan Africa to Europe each spring, namely Willow warbler (Phylloscopus trochilus), Northern wheatear (Oenanthe oenanthe), Tree pipit (Anthus trivialis) and Common quail (Coturnix coturnix); (ii) UK Met Office HadRM3 spring temperatures for prediction of moulting success of immature H. marginatum ticks and (iii) livestock densities. On average, the number of grid cells in Europe predicted to have at least one CCHFV incursion in livestock in spring was 1·04 per year for the decade 2005-2014 and 1·03 per year for the decade 2075-2084. In general with the assumed climate-change scenario, the risk increased in northern Europe but decreased in central and southern Europe, although there is considerable local variation in the trends. The absolute risk of incursion of CCHFV in livestock through ticks introduced by four abundant species of migratory bird (totalling 120 million individual birds) is very low. Climate change has opposing effects, increasing the success of the moult of the nymphal ticks into adults but decreasing the projected abundance of birds by 34% in this model. For Europe, climate change is not predicted to increase the overall risk of incursion of CCHFV in livestock through infected ticks introduced by these four migratory bird species
Abstract. In this paper we present an analysis of the differences between the Hipparcos and FK5 catalogues. We study parametric and nonparametric methods with two main objectives: first, to determine whether or not there is a pure rotation between the two catalogues, and to decide which model best represents the residuals; second, to give a practical formulation to reduce positions between the two systems at any point on the celestial sphere.
Summary
Tick‐borne pathogens can spread easily through the movements of infested birds. An important example is viruses that pose a threat to humans and that are carried in Hyalomma ticks that move from Africa into south‐western Europe. This study evaluates the probability of arrival of migrating birds from Africa into Spain and the environmental suitability of different regions of Spain for the survival of tick stages introduced by these birds. This evaluation produced a spatial risk index measuring the probability that foreign tick populations will survive in the target area. Periods of highest risk were observed for large areas of Spain, from the second fortnight of April to the second fortnight of May. Although birds may arrive as early as January and massive migrations may take place in March, the environmental suitability for Hyalomma marginatum ticks is low in these periods and high mortality of the spread stages (nymphs) is expected. This study introduces new methods of objective analysis based on spatial and process‐driven models for both ticks and hosts and critically evaluates the usefulness of spatial spreading methods for assessing the risk of tick‐borne pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.