Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate and characterize the reductive intramolecular cyclization of ethyl 2-bromo-3-(3',4'-dimethoxyphenyl)-3-(propargyloxy)propanoate (1) promoted by (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)nickel(I), [Ni(tmc)](+), electrogenerated at glassy carbon cathodes in dimethylformamide containing tetraalkylammonium salts. Cyclic voltammograms for reduction of [Ni(tmc)](2+) in the presence of 1 reveal that [Ni(tmc)](+) catalytically reduces 1 at potentials more positive than those required for direct reduction of 1. During controlled-potential electrolyses of solutions containing [Ni(tmc)](2+) and 1, catalytic reduction of the latter proceeds via one-electron cleavage of the carbon-bromine bond to form a radical intermediate that undergoes cyclization to afford 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methylenetetrahydrofuran (2). In the presence of a base (either electrogenerated or deliberately added as potassium tert-butoxide), 2 rearranges to give 2-(3',4'-dimethoxyphenyl)-3-(ethoxycarbonyl)-4-methyl-2,5-dihydrofuran (3). A mechanistic scheme is proposed to explain the results obtained by means of cyclic voltammetry and controlled-potential electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.