In this work we investigate the electrospray technique for the preparation of graphene layers for use in chemiresistive gas sensors. A dispersion of reduced graphene oxide (rGO) in isopropanol (0.1 mg/mL) is electrosprayed and the rGO flakes are deposited onto a polymeric substrate with printed interdigitated electrodes. The surface area of the substrate covered with rGO is mainly determined by the distance between the needle and the substrate, while the rGO deposition pattern strongly depends on the flowrate and the applied voltage. Homogeneous layers of rGO are obtained in stable cone-jet regime, and the room temperature detection behavior of the sensors towards NO2, O3 and CO is assessed. The sensors were not capable of detecting CO (up to 5 ppm), but they detected 0.2 ppm NO2 and 0.05 ppm O3. The results are encouraging regarding the use of electrospray for production of low-cost and low-power consumption gas sensors based on graphene for air quality applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.