We propose 1D periodic, highly doped InAsSb gratings on GaSb substrates as biosensing platforms applicable for surface plasmon resonance and surface enhanced infrared absorption spectroscopies. Based on finite-difference time-domain simulations, the electric field enhancement and the sensitivity on refractive index variations are investigated for different grating geometries. The proposed, optimized system achieves sensitivities of 900 nm RIU-1. A clear red shift of the plasmon resonance as well as the enhancement of an absorption line are presented for 2 nm thin adlayers in simulations. We experimentally confirm the high sensitivity of the InAsSb grating by measurements of the wavelength shift induced by a 200 nm thin polymethylmethacrylate layer and demonstrate an enhancement of vibrational signals. A comparison to a gold grating with equivalent optical properties in the mid-infrared is performed. Our simulations and experimental results underline the interest in the alternative plasmonic material InAsSb for highly sensitive biosensors for the mid-infrared spectral range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.