SummaryNon-ionizing radiation at 2.45 GHz may modify the expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Using the enzyme-linked immunosorbent assay (ELISA) technique, we studied levels of HSP-90 and HSP-70. We also used hematoxilin eosin to look for evidence of lesions in the gland and applied the DAPI technique of fluorescence to search for evidence of chromatin condensation and nuclear fragmentation in the thyroid cells of adult female Sprague-Dawley rats. Fifty-four rats were individually exposed for 30 min to 2.45 GHz radiation in a Gigahertz transverse electromagnetic (GTEM) cell at different levels of non-thermal specific absorption rate (SAR), which was calculated using the finite difference time domain (FDTD) technique. Ninety minutes after radiation, HSP-90 and HSP-70 had decreased significantly (P<0.01) after applying a SAR of 0.046±1.10 W/Kg or 0.104±5.10−3 W/Kg. Twenty-four hours after radiation, HSP-90 had partially recovered and HSP-70 had recovered completely. There were few indications of lesions in the glandular structure and signs of apoptosis were negative in all radiated animals. The results suggest that acute sub-thermal radiation at 2.45 GHz may alter levels of cellular stress in rat thyroid gland without initially altering their anti-apoptotic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.