Crotalaria longirostrata (chipilin) leaves contain phenolic compounds with antioxidant activity. These phenolic compounds, however, could easily degrade after extraction. Microencapsulation is a possible solution for avoiding this degradation. Frequently, microencapsulation is carried out using conventional encapsulating agents. The aim of this work was to evaluate the effect of several nonconventional encapsulating agents on microencapsulation by spray drying of phenolic compounds from chipilin, stability and release of phenolic compounds were also studied. Maltodextrin (MD), gum Arabic (GA), soy protein (SP), cocoa shell pectin (CSP), and protein (PC), as well as the gum (GC) of Cajanus cajan seeds were used. Different blends of these matrixes containing phenolic compounds from chipilin leaves were spray dried at 120 °C. After drying, the yield and microencapsulation efficiency were determined. All results were analyzed by an ANOVA test (p \ 0.05). The release kinetics of phenolic compounds were modeled using zero, first-order, Higuchi and Korsmeyer-Peppas models. The R 2 was calculated for each model. The blends of encapsulating agents allowed the formation of an efficient polymer matrix with yields between 46 and 64% and microencapsulation efficiency between 65 and 92%. Results show that maltodextrin with soy protein allowed the highest (92%) microencapsulation efficiency, although maltodextrin and cocoa shell pectin were more effective protective agents, showing greater stability. The Korsmeyer-Peppas model was the best in predicting the phenolic compounds release with R 2 values higher than 98%. The stability time for microcapsules with MD-CSP was 8.88 years and 1.43 years at 4 °C and 30 °C, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.