Two new segmented conjugated polymers bearing distyrylbenzene chromophoric units and their model compounds were synthesized. The tendency of the model compounds to form H-and J-type aggregates in the amorphous matrix was greatly diminished by the twisted polymeric architecture. Fluorescence anisotropy measurements indicated good exciton mobilities in condensed phase. Fluorescence quenching by nitroaromatic aqueous solutions was fast, complete, selective and reversible pointing to a rapid diffusion of analytes into the films. The quenching response to nitrophenols was superior to that against nitrotoluenes. The increase of the electron-donating capabilities by diethoxy-substitution was detrimental to the amorphous morphology and it did not increase sensitivity to NACs. Quenching efficiencies of polymers were not modified when MeOH was used instead of water. The solubility parameter distances, R a . indicate that the sensing materials show higher responses when their affinity with the analytes is lower. This observation could help in the designing of fluorescent sensors.
Two new fluorescent segmented conjugated polymers with either 1,4- or 2,6-distyrylnaphthalene chromophores and their model compounds were synthesized and the chemosensing abilities of the polymeric thin films to detect nitroaromatics (NACs) in aqueous media were evaluated. The structural, thermal and optical properties of the polymers were correlated with those displayed by their corresponding model compounds. Changes in the connectivity of naphthylene units caused minor differences in optical properties, morphology and quenching efficiencies. Molecular modeling highlighted the extremely bent character of polymer microstructures that explains their high solubility and amorphous character. Polymeric films are amorphous, strongly fluorescent and showed remarkable quenching efficiencies in the nanomolar range with picric acid (PA) and trinitrotoluene (TNT). Quenching experiments using either different nitroaromatic quenchers, excitation wavelengths, excitation beam path-lengths, or time of exposure of the film to the quenching solution evidenced the dominant role of inner filter effects (IFE) in the polymer response to NACs in the micromolar range. The sensing response towards PA, a quencher that strongly absorbs at the excitation wavelength, has an IFE contribution even at the nanomolar range, while the response towards the non-absorbing TNT depends only on the quenching occurring after diffusion of the analyte into the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.