Nephrolithiasis in the Slc26a6(-/-) mouse is accompanied by 50-75% reduction in intestinal oxalate secretion with unchanged intestinal oxalate absorption. The molecular identities of enterocyte pathways for oxalate absorption and for Slc26a6-independent oxalate secretion remain undefined. The reported intestinal expression of SO(4)(2-) transporter SLC26A2 prompted us to characterize transport of oxalate and other anions by human SLC26A2 and mouse Slc26a2 expressed in Xenopus oocytes. We found that hSLC26A2-mediated [(14)C]oxalate uptake (K(1/2) of 0.65 +/- 0.08 mM) was cis-inhibited by external SO(4)(2-) (K(1/2) of 3.1 mM). hSLC26A2-mediated bidirectional oxalate/SO(4)(2-) exchange exhibited extracellular SO(4)(2-) K(1/2) of 1.58 +/- 0.44 mM for exchange with intracellular [(14)C]oxalate, and extracellular oxalate K(1/2) of 0.14 +/- 0.11 mM for exchange with intracellular (35)SO(4)(2-). Influx rates and K(1/2) values for mSlc26a2 were similar. hSLC26A2-mediated oxalate/Cl(-) exchange and bidirectional SO(4)(2-)/Cl(-) exchange were not detectably electrogenic. Both SLC26A2 orthologs exhibited nonsaturable extracellular Cl(-) dependence for efflux of intracellular [(14)C]oxalate, (35)SO(4)(2-), or (36)Cl(-). Rate constants for (36)Cl(-) efflux into extracellular Cl(-), SO(4)(2-), and oxalate were uniformly 10-fold lower than for oppositely directed exchange. Acidic extracellular pH (pH(o)) inhibited all modes of hSLC26A2-mediated anion exchange. In contrast, acidic intracellular pH (pH(i)) selectively activated exchange of extracellular Cl(-) for intracellular (35)SO(4)(2-) but not for intracellular (36)Cl(-) or [(14)C]oxalate. Protein kinase C inhibited hSLC26A2 by reducing its surface abundance. Diastrophic dysplasia mutants R279W and A386V of hSLC26A2 exhibited similar reductions in uptake of both (35)SO(4)(2-) and [(14)C]oxalate. A386V surface abundance was reduced, but R279W surface abundance was at wild-type levels.
The oldest assumed ostracods appear in the fossil record from the Tremadocian Paltodus deMfer conodont Biozone. Although geographically widespread these early ostracods have no obvious Cambrian antecedents. Their first appearance at ca. 485 Ma contrasts with molecular evidence that suggests a much earlier (latest Proterozoic or Cambrian) origin for ostracods. Some Cambrian bivalved arthropods such as Altajanella and Vojbokalina, conventionally referred to the Bradoriida, have carapace morphologies that resemble Ordovician palaeocopid ostracods, though such a relationship is unproven without soft part anatomy. Evidence from preserved soft anatomy demonstrates that Bradoriida, such as Kunrningella, and Phosphatocopida, essentially the Cambrian 'ostracod' record of traditional usage, belong outside the Eucrustacea. Early Ordovician ostracods appeared first in shallow marine, oxygenated environments on shelf margins, in a similar setting to other elements of the 'Paleozoic fauna'. "Iheir biodiversity was low (3 named genera and ca. 12 species), though some taxa such as Nanopsis and Eopilla achieved widespread dispersal between major Ordovician palaeocontinents. As bradoriids were largely extinct by the Late Cambrian, ostracods do not appear to have directly competed with them for shalIow marine environments. The rapid colonisation of these settings by ostracods may have been Ÿ by the available ecospace vacated by Bradoriida.
New species of ostracods are described from the Tremadoc of the Cordillera Oriental (Argentina). These are among the earliest well-documented records of Ostracoda sensu stricto. The ostracod assemblages are sourced from shallow marine clastics and are dominated by palaeocopes (Eopilla waisfeldaen. sp.,Nanopsis coquenan. sp.), and the binodicopeKimsella luciaen. gen. and sp.EopillaandKimsellashow affinities with species from paleocontinental Gondwana (e.g., Ibero-Armorica, Turkey, Australia, Carnic Alps), butNanopsisis previously known only from paleocontinental Baltica. This study confirms that two of the major clades of Ordovician ostracods, namely the Binodicopa and the Palaeocopa, were already geographically widespread during the late Tremadoc, suggesting a still earlier origin for these groups, possibly from within the Cambrian to Early Ordovician Bradoriida. Evidence from soft-part anatomy indicates that phosphatocopids, the other group hypothesized to be ancestral ostracods, have apomorphies that preclude them as direct ancestors. The origin of ostracods is more likely to be found within the Bradoriida, a probable polyphyletic group that resembles Early Ordovician ostracods in the external sculpture of their bivalved carapace. Evidence from carapace morphology suggests that the ancestors of true ostracods might lie within the bradoriid groups Beyrichonidae and Hipponicharionidae, a hypothesis that can only truly be tested when more evidence from fossilized soft tissues becomes available.
New species of ostracods from the Tremadocian in the northwest region of Argentina are described. These are among the earliest well−documented records of ostracods, which shed new light onto the early diversification of the group. The described fauna consists of seven species, five of which are new: Saltite uchuy sp. nov., Saltite kuraq sp. nov., Conchoprimitia? iglesiasi sp. nov., Orechina violetae sp. nov., and Orechina catalinae sp. nov. The fauna consists primarily of soanellids, a non−dimorphic family of palaeocopids, and of binodicopids. One factor leading to diversification of the group in this region may have been the complex configuration of the northwest basin, which had a restricted pattern of circulation. The distribution of the first ostracods is largely restricted to Gondwana and peri−Gondwana regions. Accordingly, it is possible to envision that the origin or at least an important radiation of the group was centred in this region. Both the Soanellidae and the genus Orechina would have originated in Gondwana and would have become widespread later during the Middle Ordovician. The Tremadocian fauna located in Argentina show significant affinities with fauna located in the warm−water setting of the east Gondwana, mainly in Australia and China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.