We report some main results of multidisciplinary investigations carried out within the framework of the Indian National Gas Hydrate Program in [2002][2003] in the Krishna-Godavari Basin offshore sector, east coast of India, to explore indicators of likely gas hydrate occurrence suggested by preliminary multi-channel seismic reflection data and estimates of gas hydrate stability zone thickness. Swath bathymetry data reveal new evidence of three distinct geomorphic units representing (1) a delta front incised by several narrow valleys and mass flows, (2) a deep fan in the east and (3) a WNW-ESE-trending sedimentary ridge in the south.Deep-tow digital side-scan sonar, multi-frequency chirp sonar, and sub-bottom profiler records indicate several surface and subsurface gas-escape features with a highly resolved stratification within the upper 50 m sedimentary strata. Multi-channel seismic reflection data show the presence of bottom simulating reflections of continuous to discrete character. Textural analyses of 76 gravity cores indicate that the sediments are mostly silty clay. Geochemical analyses reveal decreasing downcore pore water sulphate (SO 4 2− ) concentrations (28.7 to <4 mM), increasing downcore methane (CH 4 ) concentrations (0-20 nM) and relatively high total organic carbon contents (1-2.5%), and microbial analyses a high abundance of microbes in top core sediments and a low abundance of sulphate-reducing bacteria in bottom core sediments.Methane-derived authigenic carbonates were identified in some cores. Combined with evidence of gasescape features in association with bottom simulating reflections, the findings strongly suggest that the physicochemical conditions prevailing in the study area are highly conducive to methane generation and gas hydrate occurrence. Deep drilling from aboard the JOIDES Resolution during 2006 has indeed confirmed the presence of gas hydrate in the KrishnaGodavari Basin offshore.
Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could be driven more by proteins than by carbohydrates and lipid content of labile organic matter (LOM), incubation experiments were carried out with sediments from different environmental niches to measure methane production. The methane production rates were examined in relationship to the sediment biochemistry, i.e., carbohydrates, proteins, and lipids. The gas production measured by head space method ranged from 216 ng g( -1) day( -1) in the mangrove sediments to 3.1 μg g( -1) day( -1) in the shallow Arabian Sea. LOM ranged from 1.56 to 2.85 mg g( -1) in the shallow Arabian Sea, from 3.35 to 5.43 mg g( -1) in the mangrove estuary, and from 0.66 to 0.70 mg g( -1) in the sandy sediments with proteins contributing maximum to the LOM pool. Proteins influenced methane production in the clayey sediments of shallow depths of the Arabian Sea (r = 0.933, p < 0.001) and mangrove estuary (r = 0.981, p < 0.001) but in the sandy beach sediments, carbohydrates (r = 0.924, p < 0.001) governed the net methane production. The gas production was more pronounced in shallow and surface sediments and it decreased with depth apparently governed by the decrease in lability index. Thus, the lability index and protein content are important factors that determine methane production rates in these coastal ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.