Accurate designing of polymerase chain reaction (PCR) primers targeting conserved segments in viral genomes is desirable for preventing false-negative results and decreasing the need for standardization across different PCR protocols. In this work, we designed and described a set of primers and probes targeting conserved regions identified from a multiple sequence alignment of 2341 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes from the Global Initiative on Sharing All Influenza Data (GISAID). We subsequently validated those primers and probes in 211,833 SARS-CoV-2 whole-genome sequences. We obtained nine systems (forward primer + reverse primer + probe) that potentially anneal to highly conserved regions of the virus genome from these analyses. In silico predictions also demonstrated that those primers do not bind to nonspecific targets for human, bacterial, fungal, apicomplexan, and other Betacoronaviruses and less pathogenic sub-strains of coronavirus. The availability of these primer and probe sequences will make it possible to validate more efficient protocols for identifying SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.