SUMMARYTooth renewal is initiated from epithelium associated with existing teeth. The development of new teeth requires dental epithelial cells that have competence for tooth formation, but specific marker genes for these cells have not been identified. Here, we analyzed expression patterns of the transcription factor Sox2 in two different modes of successional tooth formation: tooth replacement and serial addition of primary teeth. We observed specific Sox2 expression in the dental lamina that gives rise to successional teeth in mammals with one round of tooth replacement as well as in reptiles with continuous tooth replacement. Sox2 was also expressed in the dental lamina during serial addition of mammalian molars, and genetic lineage tracing indicated that Sox2 + cells of the first molar give rise to the epithelial cell lineages of the second and third molars. Moreover, conditional deletion of Sox2 resulted in hyperplastic epithelium in the forming posterior molars. Our results indicate that the Sox2 + dental epithelium has competence for successional tooth formation and that Sox2 regulates the progenitor state of dental epithelial cells. The findings imply that the function of Sox2 has been conserved during evolution and that tooth replacement and serial addition of primary teeth represent variations of the same developmental process. The expression patterns of Sox2 support the hypothesis that dormant capacity for continuous tooth renewal exists in mammals.
SUMMARYTeeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell -cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered. Outline
Loss- and gain-of function approaches modulating canonical Wnt/β-catenin activity have established a role for the Wnt/β-catenin pathway during tooth development. Here we show that Wnt/β-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of β-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that β-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving β-catenin, Lef1, Tcf1 and Bmp4.
The single large rodent incisor in each jaw quadrant is evolutionarily derived from a mammalian ancestor with many small incisors. The embryonic placode giving rise to the mouse incisor is considerably larger than the molar placode, and the question remains whether this large incisor placode is a developmental requisite to make a thick incisor. Here we used in vitro culture system to experiment with the molecular mechanism regulating tooth placode development and how mice have thick incisors. We found that large placodes are prone to disintegration and formation of two to three small incisor placodes. The balance between one large or multiple small placodes was altered through the regulation of bone morphogenetic protein (BMP) and Activin signaling. Exogenous Noggin, which inhibits BMP signaling, or exogenous Activin cause the development of two to three incisors. These incisors were more slender than normal incisors. Additionally, two inhibitor molecules, Sostdc1 and Follistatin, which regulate the effects of BMPs and Activin and have opposite expression patterns, are likely to be involved in the incisor placode regulation in vivo. Furthermore, inhibition of BMPs by recombinant Noggin has been previously suggested to cause a change in the tooth identity from the incisor to the molar. This evidence has been used to support a homeobox code in determining tooth identity. Our work provides an alternative interpretation, where the inhibition of BMP signaling can lead to splitting of the large incisor placode and the formation of partly separate incisors, thereby acquiring molar-like morphology without a change in tooth identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.