Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death “equals” new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
The Cxcl12/Cxcr4 signaling axis has been shown to promote metastasis in multiple mouse models of breast carcinoma and to be associated with increased metastatic risk in humans. Indeed, prior studies have specifically linked Cxcl12/Cxcr4 to breast cancer cell seeding, homing, survival and proliferation at future metastatic sites, due to the aberrant Cxcl12 expression in these sites (e.g. lung, liver and bone marrow). Interestingly however, the precise mechanism via which Cxcr4+ breast cancer cells escape the primary tumors in the first place (which also highly express Cxcl12), remains poorly understood. By using a novel methodology for quantifying chemotactic gradients using fixed tissue multichannel immunofluorescence (mIF), here, we demonstrate in mouse primary breast tumors that Cxcl12 gradients are concentrically expressed around cancer cell intravasation sites, known as Tumor Microenvironment of Metastasis (TMEM) doorways. Via distance analysis algorithms using mIF, we also demonstrate that TMEM-mediated Cxcl12 gradients contextually associate with Cxcr4+ breast cancer cells migrating towards the underlying TMEM doorways. As such, pharmacological inhibition of the Cxcl12/Cxcr4 pathway significantly abrogates the translocation of Cxcr4+ cancer cells to TMEM doorways, suppressing TMEM-mediated metastatic dissemination. However, targeted elimination of the Cxcr4+ gene specifically from breast cancer cells, paradoxically results in a suboptimal response, thus suggesting the existence of a bypass or compensatory mechanism. Previously, it was shown that Cxcr4+ tumor-associated macrophages (TAMs) support the invasive and migratory properties of tumor cells utilizing TMEM doorways. We thus theorized that, in the absence of Cxcr4 expression in tumor cells, the accompanying Cxcr4+ TAMs may still “read” TMEM-generated Cxcl12 chemotactic gradients. Indeed, clodronate-mediated TAM depletion results in the significant suppression of Cxcr4+ cancer cell translocation to TMEM doorways and their subsequent dissemination to the peripheral circulation and future metastatic sites. Finally, we used a variety of stromal and immune cell lineage markers to identify the precise source of TMEM-generated Cxcl12 gradients in mouse primary breast cancers. Despite that blood vessels (irrespective of presence of TMEM doorways) were primarily lined by Pdgfrb+ stromal cells with basal Cxcl12 expression, TMEM-generated Cxcl12 gradients were specifically linked to a subset of Cxcl12+Iba1+ perivascular TAMs. Pharmacological inhibition of Pdgfrb depletes Pdgfrb+Cxcl12+ stromal cells, but does not significantly affect Cxcl12/Cxcr4- mediated translocation of Cxcr4+ tumor cells to TMEM doorways. Overall, our data support a new paradigm for the implication of the Cxcl12/Cxcr4 axis during the early stages of the metastatic cascade, and propose a new avenue for rationalized antimetastatic treatments for breast cancer. Citation Format: Maria K. Lagou, Luis G. Rivera, Camille E. Duran, Joseph Burt, Xiaoming Chen, Yu Lin, Robert Eddy, Allison S. Harney, David Entenberg, John S. Condeelis, Maja H. Oktay, George S. Karagiannis. An emerging paradigm of Cxcl12/Cxcr4 involvement in breast cancer metastasis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3124.
The Cxcl12/Cxcr4 signaling axis promotes metastasis in mouse models of breast carcinoma and is linked with increased metastatic risk in humans. Prior studies have linked Cxcl12/Cxcr4 to breast cancer cell homing and survival at metastatic sites. However, the precise mechanism via which Cxcr4+ breast cancer cells escape primary tumors, which also express Cxcl12, is poorly understood. By using a novel imaging method for visualizing chemokine gradients, we show that Cxcl12 is concentrically expressed around cancer cell intravasation doorways, known as Tumor Microenvironment of Metastasis (TMEM). Using distance analysis algorithms, we also show that TMEM-mediated Cxcl12 gradients contextually associate with Cxcr4+ breast cancer cells migrating towards TMEM doorways. As such, pharmacological inhibition of the Cxcl12/Cxcr4 axis significantly abrogates translocation of Cxcr4+ cancer cells to TMEM doorways, thus suppressing metastatic dissemination. However, the targeted elimination of Cxcr4 from breast cancer cells paradoxically results in a suboptimal response compared to pharmacologic inhibition, implying the existence of a compensatory mechanism. Using clodronate-mediated macrophage depletion, we demonstrate that, in the absence of Cxcr4 expression in tumor cells, accompanying Cxcr4+ macrophages may still “read” TMEM-generated Cxcl12 chemotactic gradients. Indeed, Pdgfrb+ stromal cells may express low levels of Cxcl12, but TMEM-generated Cxcl12 gradients are primarily linked to a subset of Iba1+ perivascular tumor-associated macrophages. Overall, our data reveal a new paradigm for the implication of Cxcl12/Cxcr4 in early stages of metastasis and propose an avenue for rationalized antimetastatic treatments. Supported by Recruitment Funds RECR 3A3218
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.