Background and purpose Established prognostication markers, such as clinical findings, electroencephalography (EEG), and biochemical markers, used by clinicians to predict neurologic outcome after cardiac arrest (CA) are altered under therapeutic hypothermia (TH) conditions and their validity remains uncertain. Methods MEDLINE and EMBASE were searched for evidence on the current standards for neurologic outcome prediction for out-of-hospital CA patients treated with TH and the validity of a wide range of prognostication markers. Relevant studies that suggested one or several established biomarkers, and multimodal approaches for prognostication were included and reviewed. Results While the prognostic accuracy of various tests has been questioned after TH, pupillary light reflexes and somatosensory evoked potentials (SSEP) are still strongly associated with negative outcome for early prognostication. Increasingly, EEG background activity has also been identified as a valid predictor for outcome after 72 hours after CA and a preferred prognostic method in clinical settings. Neuroimaging techniques, such as MRI and CT, can identify functional and structural brain injury, but are not readily available at the patient’s bedside because of limited availability and high costs. Conclusions A multimodal algorithm composed of neurological examination, EEG-based quantitative testing, and SSEP, in conjunction with newer MRI sequences, if available, holds promise for accurate prognostication in CA patients treated with TH. In order to avoid premature withdrawal of care, prognostication should be performed later than 72 hours after CA.
Fecal incontinence is the involuntary loss of bowel content and affects more than 12 % of the adult population, including 45 % of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95 % and definitive explantation rates of 40 %. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence during daily activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.