The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is an international functional genomics database at the European Bioinformatics Institute (EMBL-EBI) recommended by most journals as a repository for data supporting peer-reviewed publications. It contains data from over 7000 public sequencing and 42 000 array-based studies comprising over 1.5 million assays in total. The proportion of sequencing-based submissions has grown significantly over the last few years and has doubled in the last 18 months, whilst the rate of microarray submissions is growing slightly. All data in ArrayExpress are available in the MAGE-TAB format, which allows robust linking to data analysis and visualization tools and standardized analysis. The main development over the last two years has been the release of a new data submission tool Annotare, which has reduced the average submission time almost 3-fold. In the near future, Annotare will become the only submission route into ArrayExpress, alongside MAGE-TAB format-based pipelines. ArrayExpress is a stable and highly accessed resource. Our future tasks include automation of data flows and further integration with other EMBL-EBI resources for the representation of multi-omics data.
Expression Atlas (http://www.ebi.ac.uk/gxa) provides information about gene and protein expression in animal and plant samples of different cell types, organism parts, developmental stages, diseases and other conditions. It consists of selected microarray and RNA-sequencing studies from ArrayExpress, which have been manually curated, annotated with ontology terms, checked for high quality and processed using standardised analysis methods. Since the last update, Atlas has grown seven-fold (1572 studies as of August 2015), and incorporates baseline expression profiles of tissues from Human Protein Atlas, GTEx and FANTOM5, and of cancer cell lines from ENCODE, CCLE and Genentech projects. Plant studies constitute a quarter of Atlas data. For genes of interest, the user can view baseline expression in tissues, and differential expression for biologically meaningful pairwise comparisons—estimated using consistent methodology across all of Atlas. Our first proteomics study in human tissues is now displayed alongside transcriptomics data in the same tissues. Novel analyses and visualisations include: ‘enrichment’ in each differential comparison of GO terms, Reactome, Plant Reactome pathways and InterPro domains; hierarchical clustering (by baseline expression) of most variable genes and experimental conditions; and, for a given gene-condition, distribution of baseline expression across biological replicates.
We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.