In this work, a method for preconcentrating samples in 1 cm long, 50-150 μm wide open microchannels is presented. Platinum electrodes were positioned at the channel ends, voltage was applied, and charged analyte was preconcentrated at the oppositely charged side during continuous supply of sample. The preconcentration was initially studied in a closed system, where an influence on the analyte position from a pH gradient, generated by water electrolysis, was observed. In the open channel, the analyte distribution after preconcentration was evaluated using MALDI-MS with the channel as MALDI target. MALDI matrix was applied with an airbrush or by electrospray matrix deposition and by using the latter technique higher degrees of crystallization in the channels were obtained. After preconcentrating a 1 nM cytochrome c solution for 5 min, corresponding to a supplied amount of 1.25 fmol, a signal on the cathodic channel end could be detected. When a solution of cytochrome c trypsin digest was supplied, the peptides were preconcentrated at different positions along the channel depending on their charge.
In the present work, monosaccharides from pulp samples and single wood fibers were analyzed with CE, using indirect detection due to the lack of chromophores on the monosaccharides. The hydrolysis degradation of cellulose and hemicellulose into monosaccharides was performed using TFA, either in bulk scale or in microscale. In the microscale, one single wood fiber was hydrolyzed in an open microchannel manufactured on a silicon microchip with the dimensions 50 μm × 50 μm (length 1 or 3 cm). The low monosaccharide amounts derived from a single fiber implied that a preconcentration step was necessary to increase the detectability. Thus, an electromigration preconcentration of the hydrolyzed samples was performed within the microchannel, which resulted in a significantly enhanced signal intensity of the monosaccharides. In addition to the experimental study, computer simulations were performed regarding the preconcentration step of monosaccharides. The results from these simulations correlated well with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.