Autism and mental retardation (MR) are often associated, suggesting that these conditions are etiologically related. Recently, array-based comparative genomic hybridization (array CGH) has identified submicroscopic deletions and duplications as a common cause of MR, prompting us to search for such genomic imbalances in autism. Here we describe a 1.5-Mb duplication on chromosome 16p13.1 that was found by high-resolution array CGH in four severe autistic male patients from three unrelated families. The same duplication was identified in several variably affected and unaffected relatives. A deletion of the same interval was detected in three unrelated patients with MR and other clinical abnormalities. In one patient we revealed a further rearrangement of the 16p13 imbalance that was not present in his unaffected mother. Duplications and deletions of this 1.5-Mb interval have not been described as copy number variants in the Database of Genomic Variants and have not been identified in >600 individuals from other cohorts examined by high-resolution array CGH in our laboratory. Thus we conclude that these aberrations represent recurrent genomic imbalances which predispose to autism and/or MR.
Corpus callosum abnormalities are common brain malformations with a wide clinical spectrum ranging from severe intellectual disability to normal cognitive function. The etiology is expected to be genetic in as much as 30–50% of the cases, but the underlying genetic cause remains unknown in the majority of cases. By next-generation mate-pair sequencing we mapped the chromosomal breakpoints of a patient with a de novo balanced translocation, t(1;6)(p31;q25), agenesis of corpus callosum (CC), intellectual disability, severe speech impairment, and autism. The chromosome 6 breakpoint truncated ARID1B which was also truncated in a recently published translocation patient with a similar phenotype. Quantitative polymerase chain reaction (Q-PCR) data showed that a primer set proximal to the translocation showed increased expression of ARID1B, whereas primer sets spanning or distal to the translocation showed decreased expression in the patient relative to a non-related control set. Phenotype–genotype comparison of the translocation patient to seven unpublished patients with various sized deletions encompassing ARID1B confirms that haploinsufficiency of ARID1B is associated with CC abnormalities, intellectual disability, severe speech impairment, and autism. Our findings emphasize that ARID1B is important in human brain development and function in general, and in the development of CC and in speech development in particular.
Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact breakpoints in 14 patients with partial deletions of this region. Subsequently, we linked the genotype to the patient's phenotype. Using this approach, we were able to refine the smallest deletion region linked to short stature (13q31.3: 89.5-91.6 Mb), microcephaly (13q33.3-q34), cortical development malformations (13q33.1-qter), Dandy-Walker malformation (DWM) (13q32.2-q33.1), corpus callosum agenesis (CCA) (13q32.3-q33.1), meningocele/encephalocele (13q31.3-qter), DWM, CCA, and neural tube defects (NTDs) taken together (13q32.3-q33.1), ano-/microphthalmia (13q31.3-13qter), cleft lip/palate (13q31.3-13q33.1), lung hypoplasia (13q31.3-13q33.1), and thumb a-/hypoplasia (13q31.3-q33.1 and 13q33.3-q34). Based on observations of this study and previous reports we suggest a new entity, "distal limb anomalies association," linked to 13q31.3q33.1 segment. Most of the individuals with deletion of any part of 13q21qter showed surprisingly similar facial dysmorphic features, and thus, a "13q deletion facial appearance" was suggested. Prominent nasal columella was mapped between 13q31.3 and 13q33.3, and micrognathia between 13q21.33 and 13q31.1. The degree of mental delay did not display a particular phenotype-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.