Tea is one of the most popular beverages all over the world. Being an everyday drink for almost everyone, for centuries tea was considered safe and healthy. However, fungal contamination of tea at any stage of commodity production can pose a serious health hazard due to the accumulation of toxic secondary metabolites of moulds. Contemporary research revealed incidences of highly contaminated samples. Mycotoxin transfer from naturally contaminated raw tea into beverage was well studied for ochratoxin A only, and the possible leak of other mycotoxins is discussed. The results of several surveys were combined to evaluate aflatoxin B1 and ochratoxin A contamination levels in black tea and Pu-erh. Exposure estimate to aflatoxin B1 and ochratoxin A due to tea consumption was carried out based on these data. Average contamination level corresponds to the exposure of 3–40% (aflatoxin B1) and 5–24% (ochratoxin A) of mean overall estimates for different cluster diets. Lack of data does not allow the conclusion for the necessity of public health protection measures. It is necessary to perform representative studies of different kinds of tea for regulated mycotoxins at least. Contemporary techniques for analysis of mycotoxins in tea are summarised in the present review.
Background Coronavirus-associated acute respiratory distress syndrome (CARDS) has limited effective therapy to date. NLRP3 inflammasome activation induced by SARS-CoV-2 in COVID-19 contributes to cytokine storm. Methods This randomised, multinational study enrolled hospitalised patients (18–80 years) with COVID-19-associated pneumonia and impaired respiratory function. Eligible patients were randomised (1:1) via Interactive Response Technology to DFV890 + standard-of-care (SoC) or SoC alone for 14 days. Primary endpoint was APACHE II score at Day 14 or on day-of-discharge (whichever-came-first) with worst-case imputation for death. Other key assessments included clinical status, CRP levels, SARS-CoV-2 detection, other inflammatory markers, in-hospital outcomes, and safety. Findings Between May 27, 2020 and December 24, 2020, 143 patients (31 clinical sites, 12 countries) were randomly assigned to DFV890 + SoC ( n = 71) or SoC alone ( n = 72). Primary endpoint to establish clinical efficacy of DFV890 vs. SoC, based on combined APACHE II score, was not met; LSM (SE), 8·7 (1.06) vs. 8·6 (1.05); p = 0.467. More patients treated with DFV890 vs. SoC showed ≥ 1-level improvement in clinical status (84.3% vs. 73.6% at Day 14), earlier clearance of SARS-CoV-2 (76.4% vs. 57.4% at Day 7), and mechanical ventilation-free survival (85.7% vs. 80.6% through Day 28), and there were fewer fatal events in DFV890 group (8.6% vs. 11.1% through Day 28). DFV890 was well tolerated with no unexpected safety signals. Interpretation DFV890 did not meet statistical significance for superiority vs. SoC in primary endpoint of combined APACHE II score at Day 14. However, early SARS-CoV-2 clearance, improved clinical status and in-hospital outcomes, and fewer fatal events occurred with DFV890 vs. SoC, and it may be considered as a protective therapy for CARDS. Trial registration ClinicalTrials.gov, NCT04382053. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-022-01904-w.
The authors performed screening of a wide range of mycotoxins by ultra-high-performance liquid chromatography combined with tandem mass spectrometry (UHPLC-MS/MS) in various tea products distributed on the RF market. Samples were selected in retail outlets and obtained from wholesalers. Seventy-seven tea samples were examined: 54 out of them were Camellia sinensis tea, not packed (semi-finished product) and packed; 23 were mono-and multi-component herbal tea. The analytes were 29 mycotoxins including regulated in food products (aflatoxins, ochratoxin A, deoxynivalenol, fumonisins, T-2 toxin and zearalenone), their derivatives and structural analogues (A and B trichothecenes, structural analogues of zearalenone); emergent mycotoxins (sterigmatocystin, mycophenolic acid, moniliformin, enniatins, beauvericin and Alternaria toxins). C. sinensis tea samples, both green and black, were the least contaminated. In contrast, multi-component herbal tea samples tended to be simultaneously contaminated with several mycotoxins (over five) both regulated in food products and emergent ones. Beauvericin, mycophenolic acid and enniatin B were the most frequently detected. Toxigenic properties of mixed tea microflora were examined in vitro. Model experiments were carried out on a substrate consisting of C. sinensis green tea leaves in the absence of any growth factors. Mixed mycoflora from tea, which contained potentially toxigenic species of mold species proved to be capable to simultaneously produce substantial quantities of several mycotoxins including emergent ones. Mycotoxins accumulation amounted to 290 and 5,600 µg/kg of fumonisins B1 and B2 accordingly; 130 µg/kg of zearalenone; 14 µg/kg of sterigmatocystin; 160 µg/kg of alternariol methyl ester. The present survey indicates there is a potential health risk associated with mycotoxins in teas, especially herbal ones. The systematic study of contamination of tea products distributed in the RF with mycotoxins and their producers has been performed for the first time. Long-term monitoring over variety of mycotoxins in this kind of food products is essential for assessing its safety.
COVID-19 is a syndrome affecting pulmonary function but rather in serious conditions leads to death. Kencur (Kaempferia galanga L.) is a type of rhizome plant in Indonesia that is used as an herbal medicine called Jamu because it is believed to be able to cure various types of diseases. One of which is for anti-virus. The goal of this study was to see how effective the compounds in kencur are against COVID-19 with a molecular docking strategy. Kencur biological activities were obtained from the library and the design of the Acute Respiratory Syndrome Main protease (Mpro) has been gained from the protein data bank website. In addition, the biological activities in kencur were examined utilizing Lipinski's five-point concept was used to evaluate their substance molecular characteristics. Molecular docking analysis was performed with the PyRx Virtual Screening Tool software. The PyRx program was used for molecular docking simulation. While, the Discovery Studio Visualizer program was used to visualize the interaction between SARS-CoV-2 (Mpro) and the pharmacologically active metabolites in kencur. The docking evaluation on three antiviral substances revealed that Quercetin had the lowest binding energy when bound with Mpro and thus had the greatest potential as a viral inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.