Colorectal cancer is a multi-step process characterized by a sequence of genetic alterations in cell growth regulatory genes, such as the adenomatous polyposis coli, KRAS, p53 and DCC genes. In the present study mutation analysis was performed with SSCA/direct sequencing of the hot-spot regions in exons 11 and 15 for the BRAF gene and exons 1-2 for the KRAS gene in 130 primary colorectal cancer tumors and correlated with clinico-pathological and mutational data. We also performed mutation analysis of the corresponding conserved regions in the ARAF and RAF-1 genes. Mutations in the BRAF and KRAS genes were found in 11.5 and 40% of the tumors, respectively. One germline exonic and nine germline intronic genetic variants were found in the ARAF and RAF-1 genes. All of the BRAF mutations were located in the kinase domain of the conserved region 3 in exon 15 of the BRAF gene. One novel somatic mutation was also identified in the BRAF gene. The majority of the BRAF mutations were found in colon compared with rectal tumors (P = 0.014). In agreement with others, a statistically significant correlation between BRAF mutations and microsatellite instability could be found. A negative correlation was also evident between mutations in the BRAF and KRAS genes, which supports earlier studies where somatic mutations in these genes are mutually exclusive. Collectively, our results provide support for the idea that activation of the MAP kinase pathway, especially via BRAF and KRAS mutations, is of critical importance for the development of colorectal cancer.
SummaryIn flowering plants, homologs of the Arabidopsis phosphatidylethanolamine-binding protein (PEBP) FLOWERING LOCUS T (FT) are key components in controlling flowering time. We show here that, although FT homologs are found in all angiosperms with completed genome sequences, there is no evidence to date that FT-like genes exist in other groups of plants.Through phylogeny reconstructions and heterologous expression, we examined the biochemical function of the Picea (spruces) and Pinus (pines) PEBP families -two gymnosperm taxa phylogenetically distant from the angiosperms.We have defined a lineage of gymnosperm PEBP genes, termed the FT/TERMINAL FLOWER1 (TFL1)-like genes, that share sequence characteristics with both the angiosperm FT-and TFL1-like clades. When expressed in Arabidopsis, FT/TFL1-like genes repressed flowering, indicating that the proteins are biochemically more similar to the angiosperm TFL1-like proteins than to the FT-like proteins. This suggests that the regulation of the vegetative-to-reproductive switch might differ in gymnosperms compared with angiosperms.Molecular evolution studies suggest that plasticity at exon 4 contributes to the divergence of FT-like function in floral promotion. In addition, the presence of FT-like genes in basal angiosperms indicates that the FT-like function emerged at an early stage during the evolution of flowering plants as a means to regulate flowering time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.