Neuronal apoptosis is a suspected cause of neurodegeneration in Alzheimer's disease (AD). Increased levels of amyloid beta peptide (Abeta) induce neuronal apoptosis in vitro and in vivo. The underlying molecular mechanism of Abeta neurotoxicity is not clear. The normal concentration of Abeta in cerebrospinal fluid is 4 nM. We treated human neuron primary cultures with 100 nM amyloid beta peptides Abeta(1-40) and Abeta(1-42) and the control reverse peptide Abeta(40-1). We find that although little neuronal apoptosis is induced by either peptide after 3 d of treatment, Abeta(1-42) provokes a rapid and sustained downregulation of a key anti-apoptotic protein, bcl-2, whereas it increases levels of bax, a protein known to promote cell death. In contrast, the Abeta(1-40) downregulation of bcl-2 is gradual, although the levels are equivalent to those of Abeta(1-42)-treated neurons by 72 hr of treatment. Abeta(1-40) does not upregulate bax levels. The control, reverse peptide Abeta(40-1), does not affect either bcl-2 or bax protein levels. In addition, we found that the Abeta(1-40)- and Abeta(1-42)- but not Abeta(40-1)-treated neurons had increased vulnerability to low levels of oxidative stress. Therefore, we propose that although high physiological amounts of Abeta are not sufficient to induce apoptosis, Abeta depletes the neurons of one of its anti-apoptotic mechanisms. We hypothesize that increased Abeta in individuals renders the neurons vulnerable to age-dependent stress and neurodegeneration.
Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45°C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45°C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.
Background: A number of expression systems have been developed where transgene expression can be regulated. They all have specific characteristics making them more suitable for certain applications than for others. Since some applications require the regulation of several genes, there is a need for a variety of independent yet compatible systems.
Overexpression and altered metabolism of amyloid precursor protein (APP) resulting in increased 4 kDa amyloid beta peptide (Abeta) production are believed to play a major role in Alzheimer's disease (AD). Therefore, reducing Abeta production in the brain is a possible therapy for AD. Because AD pathology is fairly restricted to the CNS of humans, we have established human cerebral primary neuron cultures to investigate the metabolism of APP. In many cell lines and rodent primary neuron cultures, phorbol ester activation of protein kinase C (PKC) increases the release of the secreted large N-terminal fragment of amyloid precursor protein (sAPP) and decreases Abeta release (; ; ). In contrast, we find that PKC activation in human primary neurons increases the rate of sAPP release and the production of APP C-terminal fragments and 4 kDa Abeta. Our results indicate species- and cell type-specific regulation of APP metabolism. Therefore, our results curtail the use of PKC activators in controlling human brain Abeta levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.