AIDS patients who receive zidovudine (AZT) frequently suffer from myopathy. This has been attributed to mitochondrial (mt) damage, and specifically to the loss of mtDNA. This study examines whether AZT causes oxidative damage to DNA in patients and to skeletal muscle mitochondria in mice, and whether this damage may be pre-
Zidovudine (3'-azido-2',3'-dideoxythymidine [AZT]) inhibits human immunodeficiency virus replication and delays progression of acquired immune deficiency syndrome. We have recently found that, in muscle, AZT causes oxidative damage to mitochondrial DNA (mtDNA) and other signs of mitochondrial oxidative damage. The aim of this work was to test if AZT causes oxidative damage to liver mtDNA. In our study, an experimental mouse model was used in which mice were administered AZT (10 mg/kg body weight/d) in drinking water. Liver mtDNA of mice treated with AZT had 40% more of the oxidized, mutagenic nucleoside, 8-oxo-7,8-dihydroxy-2'deoxyguanosine (8-oxo-dG) than untreated controls. This oxidative damage to mtDNA is caused by a significant increase (of over 240%) in peroxide production by liver mitochondria from AZT-treated mice, which was prevented by dietary administration with vitamins C and E.
A major limitation in the use of AZT for AIDS treatment is the occurrence of side effects, such as leukopenia. The effects of antioxidant vitamins C and E on AZT-induced leukopenia were investigated in mice. Mice were divided into four groups: (1) controls; (2) AZT-treated; (3) treated with AZT plus vitamins C and E; and (4) pre-treated with vitamins and then treated with AZT plus vitamins. Our results demonstrate that AZT causes leukopenia in mice, which was abrogated by administration of vitamins C and E in the pre-treated group. These vitamins prevented the decrease in cellular content induced by AZT in bone marrow and diminished peroxide levels in myeloid precursors in bone marrow. AZT also caused an increase in plasma malondialdehyde and blood oxidized glutathione levels, which was prevented by the administration of antioxidant vitamins. In conclusion, oxidative stress is involved in AZT-induced leukopenia which may be prevented by antioxidant treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.