It is shown that the standard treatment of lubrication effects in many-particle hydrodynamic interactions leads to divergent three-particle contributions to the short-time translational self-diffusion coefficient. To resolve the problem the improved method to account for lubrication is proposed. The translational and rotational self-diffusion coefficients of the Brownian semidilute suspension are then evaluated up to terms of the second order in volume fraction.
First-order virial expansion of short-time diffusion and sedimentation coefficients of permeable particles suspensions Phys. Fluids 23, 083303 (2011); 10.1063/1.3626196 Rotational and translational self-diffusion in concentrated suspensions of permeable particles We present a comprehensive computational study of the short-time transport properties of bidisperse hard-sphere colloidal suspensions and the corresponding porous media. Our study covers bidisperse particle size ratios up to 4 and total volume fractions up to and beyond the monodisperse hard-sphere close packing limit. The many-body hydrodynamic interactions are computed using conventional Stokesian Dynamics (SD) via a Monte-Carlo approach. We address suspension properties including the short-time translational and rotational self-diffusivities, the instantaneous sedimentation velocity, the wavenumber-dependent partial hydrodynamic functions, and the high-frequency shear and bulk viscosities and porous media properties including the permeability and the translational and rotational hindered diffusivities. We carefully compare the SD computations with existing theoretical and numerical results. For suspensions, we also explore the range of validity of various approximation schemes, notably the pairwise additive approximations with the Percus-Yevick structural input. We critically assess the strengths and weaknesses of the SD algorithm for various transport properties. For very dense systems, we discuss in detail the interplay between the hydrodynamic interactions and the structures due to the presence of a second species of a different size. C 2015 AIP Publishing LLC. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.