Mitochondrial permeability transition (MPT) and cytochrome c redistribution from mitochondria are two events associated with apoptosis. We investigated whether an MPT event obligatorily leads to cytochrome c release in vivo. We have previously shown that treatment of human osteosarcoma cells with the protonophore m-chlorophenylhydrazone (CCCP) for 6 h induces MPT and mitochondrial swelling without significant cell death. Here we demonstrate that release of cytochrome c does not occur and the cells remain viable even after 72 h of treatment with CCCP. Bax is not mobilized to mitochondria under these conditions. However, subsequent exposure of CCCP-treated cells to etoposide or staurosporine for 48 h results in rapid cell death and cytochrome c release that is accompanied by Bax association with mitochondria, demonstrating competency of these mitochondria to release cytochrome c with additional triggers. Our findings suggest that MPT is not a sufficient condition, in itself, to effect cytochrome c release. ß
Mitochondria play key roles in apoptosis, a central step being the release of cytochrome c (cyt c) across the outer mitochondrial membrane into the cytoplasm. We review this process in terms of the influences that induce mitochondria to release cyt c, the possible mechanisms of such release and the downstream consequences for caspase activation. The contributions of members of the Bcl-2 family in regulating mitochondrial activities relevant to apoptotic signaling are considered. Antiapoptotic members, such as Bcl-2 itself, are antagonistic to other family members, which prominently include Bax amongst a host of other proapoptotic proteins homologous to Bcl-2. Focus is placed on technical methods of determining cyt c release, which encompass cell fractionation, biochemistry, immunochemistry and confocal microscopy [including observations of release in real time using cyt c-green fluorescent protein (GFP) fusion proteins]. The advantages and potential pitfalls of the various approaches are discussed, with some emphasis on the use of cyt c-GFP fusions and the determination of the characteristics of the putative outer membrane pore through which cyt c and other mitochondrial proteins with proapoptotic functions may pass. The richness of this field relating to mitochondria and cell death is brought out by consideration of studies carried out in mammalian and yeast cells.
Excitotoxicity mediated via the (S)-a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of receptor for L-glutamate contributes to various neuropathologies involving acute brain injury and chronic degenerative disorders. In this study, AMPA-induced neuronal injury and staurosporine (STS)-mediated apoptosis were compared in primary neuronal cultures of murine cerebral cortex by analyzing indices up-and downstream of mitochondrial activation. AMPAmediated apoptosis involved induction of Bax, loss of mitochondrial transmembrane potential (DY m ), early release of cytochrome c (cyt c), and more delayed release of second mitochondrial activator of caspases (SMAC), Omi, and apoptosis-inducing factor (AIF) with early calpain and minor late activation of caspase 3. STS-induced apoptosis was characterized by a number of differences, a more rapid time course, non-involvement of DY m , and relatively early recruitment of SMAC and caspase 3. The AMPA-induced rise in intracellular calcium appeared insufficient to evoke DY m as release of cyt c preceded mitochondrial depolarization, which was followed by the cytosolic translocation of SMAC, Omi, and AIF. Bax translocation preceded cyt c release for both stimuli inferring its involvement in apoptotic induction. Inclusion of the broad spectrum caspase inhibitor zVAD-fmk reduced the AMPA-induced release of cyt c, SMAC, and AIF, while only affecting the redistribution of Omi and AIF in the STS-treated neurons. Only AIF release was affected by a calpain inhibitor (calpastatin) which exerted relatively minor effects on the progression of cellular injury. AMPA-mediated release of apoptogenic proteins was more hierarchical relative to STS with its calpain activation and caspase-dependent AIF redistribution arguing for a model with cross-talk between caspase-dependent/independent apoptosis. Keywords: (S)-a-amino-3-hydroxy-5-methylisoxazole-4-propionate, apoptosis, Bax, calpain, caspase 3, mitochondrial membrane potential, mitochondrial pro-apoptotic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.