With the goal of discovering new anti-infective agents active against microbial biofilms, this investigation focused on some natural pyrrolomycins, a family of halogenated pyrrole antibiotics. In this study the anti-staphylococcal biofilm activity of pyrrolomycins C, D, F1, F2a, F2b, F3 and of the synthesized related compounds I, II, III were investigated. The susceptibility of six staphylococcal biofilms was determined by methyltiazotetrazolium staining. Most of the compounds were active at concentrations of 1.5 microg ml(-1) with significant inhibition percentages. A few of the compounds were active at the lowest screening concentration of 0.045 microg ml(-1). The population log reduction of activity against the two best biofilm forming Staphylococcus aureus strains as determined by viable plate counts is also reported. In order to adequately assess the utility of these compounds, their toxicity against human cells was evaluated. It is concluded that pyrrolomycins and synthetic derivatives are promising compounds for developing novel effective chemical countermeasures against staphylococcal biofilms.
BackgroundTransmissible spongiform encephalopathies (TSE) are fatal neurodegenerative diseases of several mammalian species, including humans. In Italy, the active surveillance through rapid tests on brain stem from small ruminants started in 2002 on randomly selected samples of healthy slaughtered animals. Sampling number was proportionally related to the regional small ruminant population. Of the twenty Italian regions, Sicily has the second largest population of small ruminants which is mainly constituted by crossbreed animals (>70 %). Sicily contains also three native sheep breeds Pinzirita, Comisana and Valle del Belice. Native goat breeds are Girgentana, Messinese, Argentata dell’Etna, Maltese and Rossa Mediterranea. The polymorphisms of prion protein gene (PRNP) may influence disease susceptibility and breeding programs for genetic TSE resistance are being applied in sheep. Protective alleles have been recently reported for goats also. These differ from those in sheep and may allow breeding programs in the near future.In this paper the data of active surveillance for scrapie control in general population of small ruminants in Sicily are reported together with the analysis on the polymorphism of PRNP in a number of Sicilian autochthonous breeds. The evaluation of the frequency of protective alleles is fundamental for the implementation of a TSE resistance breeding program.ResultsTSE surveillance in small ruminants in Sicily showed a of total fifty seven scrapie outbreaks from 1997 to 2014 involving mainly crossbreed animals. The PRNP polymorphism analysis in autochthonous breeds showed protective allele frequencies of 30–40 % ARR in sheep and 12–18 % K222 in three of the four goat breeds; these breeds are distributed over limited areas of the island.ConclusionThe study on PRNP polymorphisms in Sicilian small ruminant population showed higher frequency of the protective alleles compared to most other European breeds. Our results suggest that PRNP genetic variety in Sicilian sheep and goats can be a resource for TSE resistance breeding programmes while maintaining the conservation of endangered breeds and valorisation of their typical food products.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-016-0766-9) contains supplementary material, which is available to authorized users.
Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach.
A case of acute toxoplasmosis in an adolescent girl, almost certainly related to the consumption of raw sausage, is described. The girl suffered of fever and weakness and presented a swollen lymph node in the submandibular region. Serology analysis was positive for Toxoplasma gondii and excluded other infections. Further analysis, with avidity test and immunoblot, confirmed the acute toxoplasmosis. She reported that about a month before the appearance of the symptoms, she had eaten a piece of raw sausage while it was being prepared by her father. We analyzed sausage samples prepared from this same batch that had been frozen for later consumption, and they demonstrated evidence of T. gondii DNA when using a specific nested PCR assay. The sausage was prepared from the meat of a pig that had been backyard raised and slaughtered at home, a traditional practice in rural communities in many countries. The tasting of fresh prepared raw sausage is a common practice throughout Italy, and it could be a major cause for toxoplasmosis as suggested by the results of a questionnaire administered in the province of Palermo, Sicily. Contact with cats and, to a lesser extent, raw salad consumption were also referred to as presumptive causes for the symptomatic cases. Two additional cases of acute toxoplasmosis reported during questionnaire administration were alleged to have been caused by the consumption of fresh sausage made with the meat of a pig raised in the yard. Traditional practices in animal farming, and the processing of meat from animals raised in the backyard or meat from wild game animals, might have a big impact on food safety.
Canine parvovirus type 2 (CPV-2) represents a major viral threat to dogs. Considering the potential effects of pets on antimicrobial resistance, information on the CPV and associated bacterial co-infections is limited. The aim of this study was to analyze the antimicrobial susceptibility and multidrug-resistance profiles of bacterial species from tissue samples of dogs with canine parvovirus infection. A set of PCR assays and sequence analyses was used for the detection and the molecular characterization of the CPV strains and other enteric viruses. Bacterial isolation, the determination of antimicrobial susceptibility via the disk diffusion method, and the determination of the minimum inhibitory concentration were performed. The detection of β-lactamase genes and toxin genes for specific bacteria was also carried out. CPV infection was confirmed in 23 dogs. Forty-three bacterial strains were isolated and all showed phenotypic resistance. Seventeen multidrug-resistant bacteria and bacteria with high resistance to third- and fourth-generation cephalosporins and metronidazole were detected. Almost 50% of the isolated Enterobacteriaceae were positive for at least one β-lactamase gene, with the majority carrying more genes as well. The evidence for multi-resistant bacteria with the potential for intra- or cross-species transmission should be further considered in a One Health approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.