Objectives Methicillin-resistant Staphylococcus aureus (MRSA) strains that express the mecA gene but are oxacillin susceptible (OS-MRSA; oxacillin MIC =2 mg/L) are increasingly reported. To gain molecular and functional insights on this observation, we focused on additional factors possibly contributing to phenotypic susceptibility. Methods The nucleotide content of mecA, femA, femB and femX genes, which are considered essential for methicillin resistance, was determined in four OS-MRSA clinical isolates and a genetically similar low-level MRSA control (oxacillin MIC 6 mg/L). Gene expression was quantified compared with the low- and a high-level MRSA (MIC 256 mg/L) control. The tertiary structure of Fem proteins was predicted based on protein structure homology modelling, using web-based automated comparative protein modelling. Growth kinetics were tested for the study and control isolates, to determine whether FemXAB mutations lead to reduced fitness. Results Genes mecA, femA, femB and femX were expressed similarly in the study and the control isolates. Mutations in the gene mecA were not present in any isolate. However, several mutations leading to amino acid substitutions in positions possibly affecting Fem enzyme activity were detected in all fem genes. Two OS-MRSA that had no oxacillin heteroresistance had more mutations in the Fem proteins compared with the remaining isolates that were heteroresistant. The low-level MRSA control had considerably fewer mutations. No differences between growth rates of the OS-MRSA and the MRSA controls were observed. Conclusions Accumulation of amino acid changes in Fem proteins might affect intact cell wall synthesis, even though not causing reduced viability, thus contributing to atypical oxacillin responsiveness.
Community-type Staphylococcus aureus strains that are positive for mecA and PBP2a but appear phenotypically susceptible to oxacillin are increasingly reported worldwide. Four S. aureus clinical isolates carrying the mecA gene with oxacillin MICs of <2 g/ml were tested for oxacillin efficiency by population analyses and experimental thigh infections. These isolates harbored staphylococcal cassette chromosome mec type IV and belonged to two genotypes. Two of the four isolates were found by population analysis to be truly oxacillin susceptible. All four isolates exhibited significant reductions in the numbers of colonies grown after dicloxacillin treatment of experimental thigh infections, as also did a mecA-negative S. aureus control strain. These observations indicate that some of the phenotypically oxacillin susceptible mecA-positive Staphylococcus aureus isolates may be at least partially responsive to oxacillin.
Limited antimicrobials remain active for treating severe infections due to KPC-producing pathogens, and optimal regimens have not been established. In murine thigh infections caused by nine KPC-producing clinical strains of Enterobacteriaceae (meropenem MICs, 1 to 4 g/ml), we evaluated the activities of tigecycline, colistin, meropenem, rifampin, and gentamicin in single and combination regimens lasting for 24 h and 48 h. Rifampin, tigecycline, and gentamicin were the most effective monotherapies, reducing significantly the CFU counts yielded from thighs infected by 88.9 to 100%, 77.8 to 88.9%, and 66.7 to 88.9% of strains, respectively; meropenem and colistin alone exhibited considerably lower performance (significant CFU reduction in 33.3% and 22.2 to 33.3% of the strains, respectively). The addition of rifampin or gentamicin to tigecycline produced synergistic effect in most strains, while antagonism was observed in 33.3 to 44.4% of the strains when colistin was added to tigecycline and in 44.4 to 55.5% of the strains for meropenem combination with tigecycline. Tigecycline combinations with gentamicin or with rifampin caused higher CFU reductions than did tigecycline plus colistin or plus meropenem with almost all strains. Furthermore, tigecycline plus gentamicin was significantly more effective than tigecycline plus colistin or tigecycline plus meropenem in 33.3 to 44.4% and 55.5 to 66.7% of the strains, respectively, while tigecycline plus rifampin significantly outperformed tigecycline plus colistin and tigecycline plus meropenem in 33.3% and 66.7 to 77.8% of the strains, respectively. Overall, our in vivo study showed that tigecycline plus rifampin or plus gentamicin is a robust regimen against soft tissue infections caused by KPCproducing strains. The combinations of tigecycline with colistin or meropenem should be considered with caution in clinical practice.
The multiclonal composition of LR enterococci indicates that linezolid resistance possibly occurred on several independent occasions. Its acquisition was often not related to linezolid administration; patients might have acquired their LR isolate from another patient that had received linezolid or, alternatively, resistance may have arisen by mutation that occurred independently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.