Summary In insects, phagocytosis is an important innate immune response against pathogens and parasites, and several signal transduction pathways regulate this process. The focal adhesion kinase (FAK)/Src and mitogen activated protein kinase (MAPK) pathways are of central importance because their activation upon pathogen challenge regulates phagocytosis via haemocyte secretion and activation of the prophenoloxidase (proPO) cascade. The goal of this study was to explore further the mechanisms underlying the process of phagocytosis. In particular, in this report, we used flow cytometry, RNA interference, enzyme‐linked immunosorbent assay, Western blot and immunoprecipitation analysis to demonstrate that (1) phagocytosis of bacteria (both Gram‐negative and Gram‐positive) is dependent on RGD‐binding receptors, FAK/Src and MAPKs, (2) latex bead phagocytosis is RGD‐binding‐receptor‐independent and dependent on FAK/Src and MAPKs, (3) lipopolysaccharide internalization is RGD‐binding‐receptor‐independent and FAK/Src‐independent but MAPK‐dependent and (4) in unchallenged haemocytes in suspension, FAK, Src and extracellular signal‐regulated kinase (ERK) signalling molecules participating in phagocytosis show both a functional and a physical association. Overall, this study has furthered knowledge of FAK/Src and MAPK signalling pathways in insect haemocyte immunity and has demonstrated that distinct signalling pathways regulate the phagocytic activity of biotic and abiotic components in insect haemocytes. Evidently, the basic phagocytic signalling pathways among insects and mammals appear to have remained unchanged during evolution.
Metal-organic frameworks (MOFs) are coordination polymers of interest for biomedical applications. Of particular importance, nanoparticles made of iron(III) trimesate (MIL-100, MIL standing for Material Institut Lavoisier) (nanoMOFs) can be conveniently synthesised under mild and green conditions. They were shown to be biodegradable, biocompatible and efficient to encapsulate a variety of active molecules. We have addressed here the challenges to encapsulate a highly hydrophilic anticancer prodrug, phosphated gemcitabin (Gem-MP) known for its instability and inability to bypass cell membranes. MIL-100 nanoMOFs acted as efficient "nanosponges", soaking Gem-MP from its aqueous solution with almost perfect efficiency (>98%). Maximal loadings reached ∼30 wt% reflecting the strong interaction between the drug and the iron trimesate matrices. Neither degradation nor loss of crystalline structure was observed after the loading process. Storage of the loaded nanoMOFs in water did not result in drug release over three days. However, Gem-MP was released in media containing phosphates, as a consequence to particle degradation. Drug-loaded nanoMOFs were effective against pancreatic PANC-1 cells, in contrast to free drug and empty nanoMOFs. However, an efflux phenomenon could contribute to reduce the efficacy of the nanocarriers. Size optimization and surface modification of the nanoMOFs are expected to further improve these findings.
E. coli phagocytosis by medfly hemocytes, in contrast to mammalian macrophages, associates with E. coli-challenged hemocyte secretion by mitogen activating protein (MAP) kinases. In the present work, we examined whether this system links with the proteolytic activation of prophenoloxidase (proPO). ProPO and prophenoloxidase-activating proteinases (PAPs) were initially identified within freshly isolated medfly hemocytes. Moreover, flow cytometry and immunocytochemical analysis revealed the constitutive expression of proPO and its stable association with hemocyte surface. The expression level of hemocyte surface proPO is not affected by E. coli infection. In addition, flow cytometry analysis in freshly isolated hemocytes showed that E. coli phagocytosis is markedly blocked by antibodies against proPO or PAPs, as well as by several serine protease inhibitors, strongly supporting the involvement of proPO cascade in the phagocytosis process. Similarly, it was shown that melanization process depends on proPO activation. MAP kinases appeared to control both phagocytosis and melanization, since they regulate PAPs secretion, a prerequisite for the conversion of proPO to active PO. From this and previous studies, hemocytes appear to be central to immune response in medfly.
Summary Phagocytosis, melanization and nodulation in insects depend on phenoloxidase (PO) activity. In this report, we demonstrated that these three processes appear to be also dependent on dopa decarboxylase (Ddc) activity. Using flow cytometry, RNA interference, immunoprecipitation and immunofluorescence, we demonstrated the constitutive expression of Ddc and its strong association with the haemocyte surface, in the medfly Ceratitis capitata. In addition, we showed that Escherichia coli phagocytosis is markedly blocked by small interfering RNA (siRNA) for Ddc, antibodies against Ddc, as well as by inhibitors of Ddc activity, namely carbidopa and benzerazide, convincingly revealing the involvement of Ddc activity in phagocytosis. By contrast, latex beads and lipopolysaccharide (LPS) did not require Ddc activity for their uptake. It was also shown that nodulation and melanization processes depend on Ddc activation, because antibodies against Ddc and inhibitors of Ddc activity prevent haemocyte aggregation and melanization in the presence of excess E. coli. Therefore, phagocytosis, melanization and nodulation depend on haemocyte‐surface‐associated PO and Ddc. These three unrelated mechanisms are based on tyrosine metabolism and share a number of substrates and enzymes; however, they appear to be distinct. Phagocytosis and nodulation depend on dopamine‐derived metabolite(s), not including the eumelanin pathway, whereas melanization depends exclusively on the eumelanin pathway. It must also be underlined that melanization is not a prerequisite for phagocytosis or nodulation. To our knowledge, the involvement of Ddc, as well as dopa and its metabolites, are novel aspects in the phagocytosis of medfly haemocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.