This paper presents a multi-scale model for the analysis of the in-plane structural response of regular masonry. It is based on a computational periodic homogenization technique and is characterized by the adoption of the Cosserat continuum model at the macroscopic structural level, taking into account the influence of the microstructure on the global response and correctly describing the localization phenomena; at the microscopic representative volume element (RVE) level, where the nonlinear constitutive behavior, geometry, and arrangement of the masonry constituents are modeled in detail, a standard Cauchy model is employed. An isotropic nonsymmetric damage model is adopted for the bricks and mortar joints. The solution algorithm is based on a parallelization strategy and on the finite-element method. Some numerical applications on typical masonry structures are reported, showing both the global response curves and the stress and damage distributions on the RVEs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.