BackgroundMyokines are a group of protein mediators produced by skeletal muscle under stress or physical exertion. Even though their discovery and effects in cell culture and animal models of disease have elicited great enthusiasm, very little is known about their role in human metabolism. We assessed whether plasma concentrations of three known myokines [myonectin, myostatin, and fibroblast-derived growth factor 21 (FGF-21)] would be associated with direct and indirect indicators of insulin resistance (IR) in individuals who did not have a diagnosis of diabetes.MethodsWe studied 81 adults of both sexes comprising a wide range of body adiposity and insulin sensitivity. All participants underwent a thorough clinical assessment and a 5-point oral glucose tolerance test with calculation of multiple IR and insulin sensitivity indices. Twenty-one of them additionally underwent a hyperinsulinemic–euglycemic clamp with determination of steady-state whole-body insulin-stimulated glucose disposal (“M”). We compared plasma myokine concentrations across quartiles of IR indices and clinical IR surrogates, and explored the correlation of each myokine with the M-value.ResultsPlasma myonectin levels increased monotonically across quartiles of the incremental area under the insulin curve (higher values indicate more IR) (p-trend = 0.021) and decreased monotonically across quartiles of the insulin sensitivity index (ISI – higher values indicate less IR) (p-trend = 0.012). After multivariate adjustment for other relevant determinants of IR (body mass index, age, and sex), the negative association of myonectin with ISI persisted (standardized beta = −0.235, p = 0.023). Myostatin was not associated with any clinical IR indicator or direct IR index measure. In multivariate analyses, FGF-21 showed a trend toward a positive correlation with glucose disposal that did not reach statistical significance (standardized beta = 0.476, p = 0.091).ConclusionThe secretion of myonectin may constitute an attempt at a compensatory mechanism against IR in humans.
The control of food intake is a regulated and complex process, which is highly influenced and often overridden by hedonic components (1, 2).The stages of food intake regulation are hunger, satiation, and satiety. Hunger represents the sensation that encourages the initiation of food consumption. Satiation is the sensation of fullness during a meal that aids in inducing the termination of a meal (2). Satiety is the period of time in which the fullness sensation persists (3). These different stages are regulated by homeostatic and hedonic cues that coalesce to control eating behavior.The homeostatic regulation is driven by the brain-gut-adipose tissue axis. The hunger system in the hypothalamus is always turned
Obesity is a chronic, multifactorial disease associated with a large number of comorbidities. The clinical management of obesity involves a stepwise integrated approach, beginning with behavioral and lifestyle modification, followed by antiobesity medications, endobariatric procedures, and bariatric surgery. Weight gain and subsequent obesity are common side effects of medications, such as prednisone or antipsychotics. In this era of precision medicine, it is essential to identify patients at the highest risk of weight gain as a result of medication use. Pharmacogenomics could play an important role in obesity management by optimizing use of antiobesity medications as well as minimizing adverse weight gain. This review aims to provide a comprehensive analysis of the current literature on the role of pharmacogenomics in obesity and medication-induced weight gain. In summary, there are more robust studies of medication associated with weight gain and pharmacogenomics, and more studies are needed to understand the role of pharmacogenomics in antiobesity medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.