We show that near–real-time seismic monitoring of fluid injection allowed control of induced earthquakes during the stimulation of a 6.1-km-deep geothermal well near Helsinki, Finland. A total of 18,160 m3of fresh water was pumped into crystalline rocks over 49 days in June to July 2018. Seismic monitoring was performed with a 24-station borehole seismometer network. Using near–real-time information on induced-earthquake rates, locations, magnitudes, and evolution of seismic and hydraulic energy, pumping was either stopped or varied—in the latter case, between well-head pressures of 60 and 90 MPa and flow rates of 400 and 800 liters/min. This procedure avoided the nucleation of a project-stopping magnitudeMW2.0 induced earthquake, a limit set by local authorities. Our results suggest a possible physics-based approach to controlling stimulation-induced seismicity in geothermal projects.
We investigate the source characteristics of picoseismicity (Mw < −2) recorded during a hydraulic fracturing in situ experiment performed in the underground Äspö Hard Rock Laboratory, Sweden. The experiment consisted of six stimulations driven by three different water injection schemes and was performed inside a 28‐m‐long, horizontal borehole located at 410‐m depth. The fracturing processes were monitored with a variety of seismic networks including broadband seismometers, geophones, high‐frequency accelerometers, and acoustic emission sensors thereby covering a wide frequency band between 0.01 and 100,000 Hz. Here we study the high‐frequency signals with dominant frequencies exceeding 1000 Hz. The combined seismic network allowed for detection and detailed analysis of 196 small‐scale seismic events with moment magnitudes MW < −3.5 (source sizes of decimeter scale) that occurred solely during the stimulations and shortly after. The double‐difference relocated hypocenter catalog as well as source parameters were used to study the physical characteristics of the induced seismicity and then compared to the stimulation parameters. We observe a spatiotemporal migration of the picoseismic events away and toward the injection intervals in direct correlation with changes in the hydraulic energy (product of fluid injection pressure and injection rate). We find that the total radiated seismic energy is extremely low with respect to the product of injected fluid volume and pressure (hydraulic energy). The radiated seismic energy correlates well with the hydraulic energy rate. The obtained fault plane solutions for particularly well‐characterized events signify the reactivation of preexisting rock defects under influence of increased pore fluid pressure on fault plane orientations in good correspondence with the local stress field orientation.
Abstract. In this study, we present a high-resolution dataset of seismicity framing the stimulation campaign of a 6.1 km deep enhanced geothermal system (EGS) in the Helsinki suburban area and discuss the complexity of fracture network development. Within the St1 Deep Heat project, 18 160 m3 of water was injected over 49 d in summer 2018. The seismicity was monitored by a seismic network of near-surface borehole sensors framing the EGS site in combination with a multi-level geophone array located at ≥ 2 km of depth. We expand the original catalog of Kwiatek et al. (2019), including detected seismic events and earthquakes that occurred 2 months after the end of injection, totaling 61 163 events. We relocated events of the catalog with moment magnitudes between Mw −0.5 and Mw 1.9 using the double-difference technique and a new velocity model derived from a post-stimulation vertical seismic profiling (VSP) campaign. The analysis of the fault network development at a reservoir depth of 4.5–7 km is one primary focus of this study. To achieve this, we investigate 191 focal mechanisms of the induced seismicity using a cross-correlation-based technique. Our results indicate that seismicity occurred in three spatially separated clusters centered around the injection well. We observe a spatiotemporal migration of the seismicity during the stimulation starting from the injection well in the northwest–southeast (NW–SE) direction and in the northeast (NE) direction towards greater depth. The spatial evolution of the cumulative seismic moment, the distribution of events with Mw≥1, and the fault plane orientations of focal mechanisms indicate an active network of at least three NW–SE- to NNW–SSE-oriented permeable zones, which is interpreted to be responsible for the migration of seismic activity away from the injection well. Fault plane solutions of the best-constrained focal mechanisms and results for the local stress field orientation indicate a reverse faulting regime and suggest that seismic slip occurred on a sub-parallel network of pre-existing weak fractures favorably oriented with the stress field, striking NNW–SEE with a dip of 45∘ ENE parallel to the injection well.
Abstract. In this study, we present a high-resolution dataset of seismicity framing the stimulation campaign of a 6.1 km deep Enhanced Geothermal System (EGS) in Helsinki suburban area and discuss the complexity of fracture network development. Within St1 Deep Heat project, 18 160 m3 of water was injected over 49 days in summer 2018. The seismicity was monitored by a seismic network of near-surface borehole sensors framing the EGS site in combination with a multi-level geophone array located at ≥ 2 km depth. We expand the original catalog of Kwiatek et al. (2019) and provide the community with the dataset including detected seismic events and earthquakes that occurred two month after the end of injection, totalling to 61 163 events. We relocated events of the catalog with sufficient number of available phase onsets and moment magnitudes between Mw −0.7 and Mw 1.9 using the double-difference technique and a new velocity model derived from a post-stimulation vertical seismic profiling campaign. The analysis of the fault network development at reservoir depth of 4.5–7 km is one primary focus of this study. To achieve this, we investigate 191 focal mechanisms of the induced seismicity using cross-correlation based technique. Our results indicate that seismicity occurred in three spatially separated clusters centered around the injection well. We observe a spatio-temporal migration of the seismicity during the stimulation starting from the injection well in northwest (NW) – southeast (SE) direction and in northeast (NE) direction towards greater depth. The spatial evolution of the cumulative seismic moment, the distribution of events with Mw ≥ 1 and the fault plane orientations of focal mechanisms indicate an active network of at least three NW–SE to NNW-SSE orientated permeable zones which is interpreted to be responsible for migration of seismic activity away from the injection well. Fault plane solutions of the best-constrained focal mechanisms as well as results for the local stress field orientation indicate a reverse faulting regime and suggest that seismic slip occurred on a sub-parallel network of pre-existing weak fractures favorably oriented with the stress field, striking NNW-SEE with a dip of 45° ENE, parallel to the injection well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.