Easy access, variety of content, and fast widespread interactions are some of the reasons making social media increasingly popular. However, this rise has also enabled the propagation of fake news, text published by news sources with an intent to spread misinformation and sway beliefs. Detecting it is an important and challenging problem to prevent large scale misinformation and maintain a healthy society.We view fake news detection as reasoning over the relations between sources, articles they publish, and engaging users on social media in a graph framework. After embedding this information, we formulate inference operators which augment the graph edges by revealing unobserved interactions between its elements, such as similarity between documents' contents and users' engagement patterns. Our experiments over two challenging fake news detection tasks show that using inference operators leads to a better understanding of the social media framework enabling fake news spread, resulting in improved performance.
Grammar-based fuzzing is a technique used to find software vulnerabilities by injecting well-formed inputs generated following rules that encode application semantics. Most grammar-based fuzzers for network protocols rely on human experts to manually specify these rules. In this work we study automated learning of protocol rules from textual specifications (i.e. RFCs). We evaluate the automatically extracted protocol rules by applying them to a state-of-the-art fuzzer for transport protocols and show that it leads to a smaller number of test cases while finding the same attacks as the system that uses manually specified rules.
Extracting moral sentiment from text is a vital component in understanding public opinion, social movements, and policy decisions. The Moral Foundation Theory identifies five moral foundations, each associated with a positive and negative polarity. However, moral sentiment is often motivated by its targets, which can correspond to individuals or collective entities. In this paper, we introduce morality frames, a representation framework for organizing moral attitudes directed at different entities, and come up with a novel and highquality annotated dataset of tweets written by US politicians. Then, we propose a relational learning model to predict moral attitudes towards entities and moral foundations jointly. We do qualitative and quantitative evaluations, showing that moral sentiment towards entities differs highly across political ideologies.
Building models for realistic natural language tasks requires dealing with long texts and accounting for complicated structural dependencies. Neural-symbolic representations have emerged as a way to combine the reasoning capabilities of symbolic methods, with the expressiveness of neural networks. However, most of the existing frameworks for combining neural and symbolic representations have been designed for classic relational learning tasks that work over a universe of symbolic entities and relations. In this paper, we present DRaiL, an open-source declarative framework for specifying deep relational models, designed to support a variety of NLP scenarios. Our framework supports easy integration with expressive language encoders, and provides an interface to study the interactions between representation, inference and learning.
Representing, and reasoning over, long narratives requires models that can deal with complex event structures connected through multiple relationship types. This paper suggests to represent this type of information as a narrative graph and learn contextualized event representations over it using a relational graph neural network model. We train our model to capture event relations, derived from the Penn Discourse Tree Bank, on a huge corpus, and show that our multi-relational contextualized event representation can improve performance when learning script knowledge without direct supervision and provide a better representation for the implicit discourse sense classification task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.