Entamoeba histolytica, the parasite which causes amebiasis is responsible for 110 000 deaths a year. Entamoeba histolytica depends on glycolysis to obtain ATP for cellular work. According to metabolic flux studies, hexokinase exerts the highest flux control of this metabolic pathway; therefore, it is an excellent target in the search of new antiamebic drugs. To this end, a tridimensional model of E. histolytica hexokinase 1 (EhHK1) was constructed and validated by homology modeling. After virtual screening of 14 400 small molecules, the 100 with the best docking scores were selected, purchased and assessed in their inhibitory capacity. The results showed that three molecules (compounds 2921, 11275 and 2755) inhibited EhHK1 with an I 50 of 48, 91 and 96 mM, respectively. Thus, we found the first inhibitors of EhHK1 that can be used in the search of new chemotherapeutic agents against amebiasis.
The importance of studying the human papillomavirus (HPV) is because it is a disease that relies on 14 HPV types classified as carcinogenic high risk and that contributes to cervical cancers affecting approximately 527,600 women yearly and causing 265,387 deaths yearly, being the second mortality cause for women globally. In Mexico, 13.9% of demises are due to cervical uterine cancer (CUCA). The challenges for a vaccine that may prevent HPV occurrence are an active field for scientists with significant advances but still undergoing for a full cure to this disease. In this work, latest research trends to treat HPV are analyzed, and by means of molecular coupling analysis, a modeling and simulation process to predict interactions of leader molecules with the target for synthetic elaboration of a possible therapeutic treatment is developed. One of the main topics discussed in this chapter relates to new drug design for HPV treatment, which is related to the inhibitors of protein-protein interactions and in the protein drugs. Regarding HPV therapy development, a group of small molecules has been identified using high-performance sieving capable of interrupting HPV16 E1-E2 interaction, which helps avoid viral replication. Some of these compounds displayed nanomolar affinities and high specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.