Using a training set of diketo-like acid HIV-1 integrase (IN) strand-transfer inhibitors, a 3D pharmacophore model was derived having quantitative predictive ability in terms of activity. The best statistical hypothesis consisted of four features (one hydrophobic aromatic region, two hydrogen-bond acceptors, and one hydrogen-bond donor) with r of 0.96. The resulting pharmacophore model guided the rational design of benzylindoles as new potent IN inhibitors, whose microwave-assisted synthesis and biological evaluation are reported.
Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (10
3
–10
7
viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (
i.e
. <40 RNA copies/mL) after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*10
5
cells) in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR
+
) effector memory CD4
+
T-cells
in vivo
, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing potential cures for AIDS.
We report herein the synthesis of a series of 19 2-hydroxyisoquinoline-1,3(2H,4H)-dione derivatives variously substituted at position 7 aimed at inhibiting selectively two-metal ion catalytic active sites. The compounds were tested against HIV-1 reverse transcriptase (RT) polymerase, HIV-1 RT ribonuclease H (RNase H), and HIV-1 integrase (IN). Most compounds displayed poor inhibition of RT polymerase even at 50 microM. The majority of the synthesized compounds inhibited RNase H and IN at micromolar concentrations, and some of them were weakly selective for IN. Surprisingly, two new hits were discovered, which displayed a high selectivity for IN with submicromolar IC50 values. These enzymatic inhibitory properties may be related to the metal binding abilities of the compounds. Physicochemical studies were consistent with a 1/1 stoichiometry of the magnesium complexes in solution, and the metal complexation was strictly dependent on the enolization abilities of the compounds. Unfortunately, all tested compounds exhibited high cellular cytotoxicity in cell culture which limits their applications as antiviral agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.