Our previous data suggested that in mouse sympathetic superior cervical ganglion (SCG) the dystrophin-dystroglycan complex may be involved in the stabilization of the nicotinic acetylcholine receptor (nAChR) clusters. Here we used SCG of dystrophic mdx mice, which express only the shorter isoforms of dystrophin (Dys), to investigate whether the lack of the full-length dystrophin (Dp427) could affect the localization of the dystroglycan and the alpha3 nAChR subunit (alpha3AChR) at the postsynaptic apparatus. We found a selective reduction in intraganglionic postsynaptic specializations immunopositive for alpha3AChR and for alpha- and beta-dystroglycan compared with the wild-type. Moreover, in mdx mice, unlike the wild-type, the disassembly of intraganglionic synapses induced by postganglionic nerve crush occurred at the slower rate and was not preceded by the loss of immunoreactivity for Dys isoforms, beta-dystroglycan, and alpha3AChR. These data indicate that the absence of Dp427 at the intraganglionic postsynaptic apparatus of mdx mouse SCG interferes with the presence of both dystroglycan and nAChR clusters at these sites and affects the rate of synapse disassembly induced by postganglionic nerve crush. Moreover, they suggest that the decrease in ganglionic nAChR may be one of the factors responsible for autonomic imbalance described in Duchenne muscular dystrophy patients.
In mouse sympathetic superior cervical ganglion (SCG), cortical cytoskeletal proteins such as dystrophin (Dys) and beta1sigma2 spectrin colocalize with beta-dystroglycan (beta-DG), a transmembrane dystrophin-associated protein, and the acetylcholine receptor (AChR) at the postsynaptic specialization. The function of the dystrophin-dystroglycan complex in the organization of the neuronal cholinergic postsynaptic apparatus was studied following changes in the immunoreactivity of these proteins during the disassembly and subsequent reassembly of the postsynaptic specializations induced by axotomy of the ganglionic neurons. After axotomy, a decrease in the number of intraganglionic synapses was observed (t1/2 8 h 45'), preceded by a rapid decline of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3 AChR subunit (alpha3AChR) (t1/2 3 h 45', 4 h 30' and 6 h, respectively). In contrast, the percentage of postsynaptic densities immunopositive for beta1sigma2 spectrin remained unaltered. When the axotomized neurons began to regenerate their axons, the number of intraganglionic synapses increased, as did that of postsynaptic specializations immunopositive for beta-DG, Dys, and alpha3AChR. The latter number increased more slowly than that of Dys and beta-DG. These observations suggest that in SCG neurons, the dystrophin-dystroglycan complex might play a role in the assembly-disassembly of the postsynaptic apparatus, and is probably involved in the stabilization of AChR clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.