In the present work, several localization schemes developed by the Method of Approximated Particular Solutions are evaluated. This meshless method uses solutions of a non-homogeneous Poisson auxiliary equation to approximate the dependent variable. Diffusion problems with Dirichlet and Neumann boundary conditions are selected to evaluate the performance of the localization strategy by using cross-shaped, cross-elongated shaped and circular neighborhoods. The results obtained with the cross-shaped neighborhoods show greater stability with respect to the shape parameter. Local formulations perform better on problems with Dirichlet boundary conditions while the global formulation obtains better results on diffusion problems with Neumann boundary conditions.
Nos últimos anos o estudo das unidades plurilexicais foi gañando interese no ámbito da terminoloxía. O presente artigo céntrase na análise das colocacións e a súa presenza no ámbito científico-técnico. Por unha banda inténtase amosar a pertinencia das colocacións no discurso especializado e, por outra, trátase da súa inclusión nos dicionarios de especialidade, de xeito que se lle facilite a consulta aos usuarios potenciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.