Endowed with an elaborate cerebral cortex, humans and other primates can assess the number of items in a set, or numerosity, from birth on [1] and without being trained [2]. Whether spontaneous numerosity extraction is a unique feat of the mammalian cerebral cortex [3-7] or rather an adaptive property that can be found in differently designed and independently evolved neural substrates, such as the avian enbrain [8], is unknown. To address this question, we recorded single-cell activity from the nidopallium caudolaterale (NCL), a high-level avian association brain area [9-11], of numerically naive crows. We found that a proportion of NCL neurons were spontaneously responsive to numerosity and tuned to the number of items, even though the crows were never trained to assess numerical quantity. Our data show that numerosity-selective neuronal responses are spontaneously present in the distinct endbrains of diverge vertebrate taxa. This seemingly hard-wired property of the avian endbrain to extract numerical quantity explains how birds in the wild, or right after hatching, can exploit numerical cues when making foraging or social decisions. It suggests that endbrain circuitries that evolved based on convergent evolution, such as the avian endbrain, give rise to the same numerosity code.
A large body of literature shows that non-human animals master numerical discriminations, but a limit has been reported in a variety of species in the comparison 3vs.4. Little is known regarding the possibility of using “cognitive strategies” to enable this discrimination. The aims of this study were to investigate: whether domestic chicks discriminated 3vs.4, and if changes in stimuli presentation could improve chicks’ numerical performance. Newly hatched chicks were reared with seven identical objects. On day 4, they underwent 20 consecutive testing trials to assess their capability to discriminate 3vs.4. The objects were presented, one-by-one, to the chicks and hidden behind one of two identical panels. As expected, the chicks did not discriminate (Experiment 1). When objects were presented and hidden in groups comprising one or two objects (2 + 1)vs.(2 + 2), the chicks succeeded (Experiment 2). The grouping strategy did not help in the case of a harder discrimination of (3 + 1)vs.(3 + 2) (Experiment 3), unless chicks were allowed to rest for two hours between testing sessions (Experiment 4). Our results suggest that in some cases, the limits reported for numerical performance in animals do not depend on cognitive limitations but on attentional or motivational factors, which can be overcome employing simple procedural adjustments.
Day-old domestic chicks approach the larger of two groups of identical objects, but in a 3 vs 4 comparison, their performance is random. Here we investigated whether adding individually distinctive features to each object would facilitate such discrimination. Chicks reared with 7 objects were presented with the operation 1 + 1 + 1 vs 1 + 1 + 1 + 1. When objects were all identical, chicks performed randomly, as expected (Experiment 1). In the remaining experiments, objects differed from one another due to additional features. Chicks succeeded when those features were differently oriented segments (Experiment 2) but failed when the features were arranged to depict individually different face-like displays (Experiment 3). Discrimination was restored if the face-like stimuli were presented upside-down, disrupting global processing (Experiment 4). Our results support the claim that numerical discrimination in 3 vs 4 comparison benefits from the presence of distinctive features that enhance object individuation due to individual processing. Interestingly, when the distinctive features are arranged into upright face-like displays, the process is susceptible to global over local interference due to configural processing. This study was aimed at assessing whether individual object processing affects numerical discrimination. We hypothesise that in humans similar strategies aimed at improving performance at the non-symbolic level may have positive effects on symbolic mathematical abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.