Nitrous oxide (N2O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2O emissions. Much of the N2O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2O dynamics, we aimed to identify key controlling factors influencing N2O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritize future research. We conducted an extensive literature review and random effect meta‐analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include the following: soil pH and texture; experimental set‐up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2O emissions with a measure of uncertainty; data from a control with zero‐N application and meteorological data.
Highlights
Urinary nitrogen concentrations were lowest on animals consuming high sugar grasses.
However, soil under high sugar grasses recorded the highest N
2
O emissions.
Synthetic urine generated N
2
O emissions inconsistent with locally collected urine.
Differences in emissions amongst systems were explained by gene abundance ratios.
Results indicate the importance of soil-pasture-animal-microbiome interactions.
In grassland systems, cattle and sheep urine patches are recognized as nitrous oxide (N2O) emission hot spots due to the high urinary nitrogen (N) concentrations. Hippuric acid (HA) is one of the constituents of ruminant urine that has been reported as a natural inhibitor of soil N2O emissions. The aim of this study was to examine the potential for elevated ruminant urine HA concentrations to reduce N2O emissions, in situ, on an acidic heavy clay soil under poorly drained conditions (WFPS > 85%). A randomized complete block design experiment with three replications and four treatments was conducted using the closed‐static‐flux chamber methodology. The four treatments were applied inside the chambers: control with no artificial urine application (C), control artificial urine (U), and enriched artificial urine with two rates of HA (55.8 and 90 mM, U+HA1, U+HA2). Soil inorganic‐N, soil dissolved organic carbon (DOC), soil pH as well as N2O and methane (CH4) fluxes were monitored over a 79‐d period. Although N2O emissions were not affected by the HA enriched urine treatments, U+HA2 positively affected the retention of N as
NH4 + until day 3, when the soil pH dropped to values < 5. Subsequently, as a consequence of rainfall events and soil acidification, it is likely that leaching or sorption onto clay reduced the efficacy of HA, masking any treatment differential effect on N2O emissions. Moreover, CH4 fluxes as well as DOC results reflected the soil anaerobic conditions which did not favour nitrification processes. Further research is needed to determine the fate of HA into the soil which might clarify the lack of an in situ effect of this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.