Influenza D virus (IDV), a new member of the Orthomyxoviridae family, was first reported in 2011 in swine in Oklahoma, and consequently found in cattle across North America and Eurasia. To investigate the circulation of IDV among pigs in Italy, in the period between June 2015 and May 2016, biomolecular and virological tests were performed on 845 clinical samples collected from 448 pig farms affected by respiratory distress located in the Po Valley. Serological tests were conducted on 3698 swine sera, including archive sera collected in 2009, as well as samples collected in 2015 from the same region. Viral genome was detected in 21 (2.3%) samples from 9 herds (2%), while virus was successfully isolated from 3 samples. Genetic analysis highlighted that Italian swine IDVs are closely related to the D/swine/Oklahoma/1334/2011 cluster. Sera collected in 2015 showed a high prevalence of IDV antibody titers (11.7%), while archive sera from 2009 showed statistically significant lower positivity rates (0.6%). Our results indicate an increasing epidemiological relevance of the pathogen and the need for in-depth investigations towards understanding its pathogenesis, epidemiology and possible zoonotic potential of this emerging virus.
BackgroundBat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments.ResultsFamily-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3–16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii.ConclusionsThis study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats.
BackgroundThe genus Flavivirus comprises several mosquito-borne species, including the zoonotic pathogens West Nile and Usutu virus, circulating in animals and humans in Italy since 1998. Due to its ecological and geographical features, Piedmont is considered a risk area for flavivirus transmission. Here we report the results of a flavivirus survey (detection and genetic characterization) of mosquitoes collected in Piedmont in 2012 and the genetic characterization of three strains detected in 2011.MethodsPools of 1–203 mosquitoes, upon RNA extraction with TRIzol, were screened by a PCR assay for a 263 bp fragment of the Flavivirus NS5 gene. All positive samples were tested with a specific PCR for the E protein gene of Usutu virus and a generic Flavivirus RT-nested-PCR for a larger tract of the NS5 gene before sequencing. Phylogenetic trees were built with both NS5 fragments of representative Flavivirus species. DNA extracts of part of the positive pools were tested to detect sequences integrated in the host genome.ResultsThirty-four mosquito pools resulted positive for flaviviruses, and twenty-five flavivirus sequences underwent phylogenetic analysis for the short NS5 fragment. Among the 19 sequences correlating with the insect-specific flavivirus group, ten samples, retrieved from Aedes albopictus, clustered within Aedes flavivirus, while the other nine aggregated in a separate clade composed of strains from various mosquito species (mainly Aedes vexans) from Piedmont and the Czech Republic. Six out of these nine also presented a DNA form of the sequence. The remaining sequences belonged to the mosquito-borne group: four, all from Culex pipiens, correlated to Italian Usutu virus strains, whereas two, from Ochlerotatus caspius, were highly similar to Marisma mosquito virus (MMV).ConclusionsOur findings confirm the circulation of Usutu virus and of the potentially zoonotic Marisma mosquito virus in Piedmont. This is the first detection of Aedes flavivirus in Piedmont. Finally, further evidence for the integration of Flavivirus nucleic acid into the host genome has been shown. These results underline the importance of continuing intense mosquito-based surveillance in Piedmont, supported by a mosquito control program in areas at high risk for human exposure.
Rapid detection and subtyping of H5 and H7 subtypes influenza A viruses are important for disease control in poultry and potential transmission to humans. Currently, virus isolation and subsequent HA and NA subtyping constitute the standard for avian influenza viruses detection and subtype identification. These methods are highly accurate and sensitive but are also laborious and time-consuming. Reverse transcription PCR and real time reverse transcription PCR assays, suitable tests for rapid detection, have previously been used for the specific diagnosis of H5 and H7 viruses, however, at present, no primer and probe sets are available for the identification of all H5 and H7 strains. Herein, we have developed specific and sensitive real time reverse transcription PCR assays for the detection of type A influenza virus and for subtyping of avian H5 and H7 hemagglutinin subtypes and we have also compared these molecular assays with viral isolation in terms of sensitivity. Our results demonstrate that the real time reverse transcription PCR assays are more sensitive, specific, less expensive compared to viral isolation. In conclusion, molecular assays could represent an useful tool for rapid detection and screening of H5 and H7 isolates during influenza A virus outbreaks alternatively to viral isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.